Skip to main content
Log in

Personalized monitoring of therapeutic salicylic acid in dried blood spots using a three-layer setup and desorption electrospray ionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Desorption electrospray ionization (DESI) mass spectrometry is an emerging technology for direct therapeutic drug monitoring in dried blood spots (DBS). Current DBS methods require manual application of small molecules as internal standards for absolute drug quantification. With industrial standardization in mind, we superseded the manual addition of standard and built a three-layer setup for robust quantification of salicylic acid directly from DBS. We combined a dioctyl sodium sulfosuccinate weave facilitating sample spreading with a cellulose layer for addition of isotope-labeled salicylic acid as internal standard and a filter paper for analysis of the standard-containing sample by DESI-MS. Using this setup, we developed a quantification method for salicylic acid from whole blood with a validated linear curve range from 10 to 2000 mg/L, a relative standard deviation (RSD%) ≤14 %, and determination coefficients of 0.997. The limit of detection (LOD) was 8 mg/L and the lower limit of quantification (LLOQ) was 10 mg/L. Recovery rates in method verification by LC-MS/MS were 97 to 101 % for blinded samples. Most importantly, a study in healthy volunteers after administration of a single dose of Aspirin provides evidence to suggest that the three-layer setup may enable individual pharmacokinetic and endpoint testing following blood collection by finger pricking by patients at home. Taken together, our data suggests that DBS-based quantification of drugs by DESI-MS on pre-manufactured three-layer cartridges may be a promising approach for future near-patient therapeutic drug monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stead AH, Moffat AC (1983) A collection of therapeutic, toxic and fatal blood drug concentrations in man. Hum Toxicol 2(3):437–464

    Article  CAS  Google Scholar 

  2. Mullangi R, Sharma K, Srinivas NR (2012) Review of HPLC methods and HPLC methods with mass spectrometric detection for direct determination of aspirin with its metabolite(s) in various biological matrices. Biomed Chromatogr 26(8):906–941. doi:10.1002/bmc.2694

    CAS  Google Scholar 

  3. Calabro JJ, Paulus HE (1970) Anti-inflammatory effect of acetylsalicylic acid in rheumatoid arthritis. Clin Orthop Relat Res 71:124–131

    Article  CAS  Google Scholar 

  4. Nirogi R, Kandikere V, Mudigonda K, Ajjala D, Suraneni R, Thoddi P (2011) Simultaneous extraction of acetylsalicylic acid and salicylic acid from human plasma and simultaneous estimation by liquid chromatography and atmospheric pressure chemical ionization/tandem mass spectrometry detection. Application to a pharmacokinetic study. Arzneimittelforschung 61(5):301–311. doi:10.1055/s-0031-1296203

    Article  CAS  Google Scholar 

  5. Li LP, Feng BS, Yang JW, Chang CL, Bai Y, Liu HW (2013) Applications of ambient mass spectrometry in high-throughput screening. Analyst 138(11):3097–3103. doi:10.1039/c3an00119a

    Article  CAS  Google Scholar 

  6. Barfield M, Spooner N, Lad R, Parry S, Fowles S (2008) Application of dried blood spots combined with HPLC-MS/MS for the quantification of acetaminophen in toxicokinetic studies. J Chromatogr B 870(1):32–37. doi:10.1016/j.jchromb.2008.05.025

    Article  CAS  Google Scholar 

  7. Spooner N, Lad R, Barfield M (2009) Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: considerations for the validation of a quantitative bioanalytical method. Anal Chem 81(4):1557–1563. doi:10.1021/ac8022839

    Article  CAS  Google Scholar 

  8. Venter A, Sojka PE, Cooks RG (2006) Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal Chem 78(24):8549–8555. doi:10.1021/ac0615807

    Article  CAS  Google Scholar 

  9. Hu Q, Talaty N, Noll RJ, Cooks RG (2006) Desorption electrospray ionization using an Orbitrap mass spectrometer: exact mass measurements on drugs and peptides. Rapid Commun Mass Spectrom 20(22):3403–3408. doi:10.1002/rcm.2757

    Article  CAS  Google Scholar 

  10. Friia M, Legros V, Tortajada J, Buchmann W (2012) Desorption electrospray ionization-orbitrap mass spectrometry of synthetic polymers and copolymers. J Mass Spectrom 47(8):1023–1033. doi:10.1002/jms.3057

    Article  CAS  Google Scholar 

  11. Wiseman JM, Evans CA, Bowen CL, Kennedy JH (2010) Direct analysis of dried blood spots utilizing desorption electrospray ionization (DESI) mass spectrometry. Analyst 135(4):720. doi:10.1039/b922329k

    Article  CAS  Google Scholar 

  12. Liu J, Wang H, Manicke NE, Lin J-M, Cooks RG, Ouyang Z (2010) Development, characterization, and application of paper spray ionization. Anal Chem 82(6):2463–2471. doi:10.1021/ac902854g

    Article  CAS  Google Scholar 

  13. Kennedy JH, Wiseman JM (2010) Evaluation and performance of desorption electrospray ionization using a triple quadrupole mass spectrometer for quantitation of pharmaceuticals in plasma. Rapid Commun Mass Spectrom 24(3):309–314. doi:10.1002/rcm.4390

    Article  CAS  Google Scholar 

  14. Li W, Tse FL (2010) Dried blood spot sampling in combination with LC-MS/MS for quantitative analysis of small molecules. Biomed Chromatogr 24(1):49–65. doi:10.1002/bmc.1367

    Article  Google Scholar 

  15. Parker SP, Khan HI, Cubitt WD (1999) Detection of antibodies to hepatitis C virus in dried blood spot samples from mothers and their offspring in Lahore, Pakistan. J Clin Microbiol 37(6):2061–2063

    CAS  Google Scholar 

  16. Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci U S A 105(47):18120–18125. doi:10.1073/pnas.0801066105

    Article  Google Scholar 

  17. Abu-Rabie P, Denniff P, Spooner N, Brynjolffssen J, Galluzzo P, Sanders G (2011) Method of applying internal standard to dried matrix spot samples for use in quantitative bioanalysis. Anal Chem 83(22):8779–8786. doi:10.1021/ac202321q

    Article  CAS  Google Scholar 

  18. Liu J, Cooks RG, Ouyang Z (2013) Enabling quantitative analysis in ambient ionization mass spectrometry: internal standard coated capillary samplers. Anal Chem 85(12):5632–5636. doi:10.1021/ac401056q

    Article  CAS  Google Scholar 

  19. Przybylski C, Gonnet F, Buchmann W, Daniel R (2012) Critical parameters for the analysis of anionic oligosaccharides by desorption electrospray ionization mass spectrometry. J Mass Spectrom 47(8):1047–1058. doi:10.1002/jms.3052

    Article  CAS  Google Scholar 

  20. Green FM, Salter TL, Gilmore IS, Stokes P, O'Connor G (2010) The effect of electrospray solvent composition on desorption electrospray ionisation (DESI) efficiency and spatial resolution. Analyst 135(4):731–737

    Article  CAS  Google Scholar 

  21. Katzung BG, Masters SB, Trevor AJ (2009) Basic & clinical pharmacology, 11th edition. McGraw-Hill Medical Publishing Division, New York

  22. Hönes J, Müller P, Surridge, N (2008) The technology behind glucose meters: test strips. Diabetes Technol Ther 10. doi:10.1089/dia.2008.0005

  23. Wagner M, Tonoli D, Varesio E, Hopfgartner G (2014) The use of mass spectrometry to analyze dried blood spots. Mass Spectrom Rev. doi:10.1002/mas.21441

    Google Scholar 

  24. Vuignier K, Guillarme D, Veuthey J-L, Carrupt P-A, Schappler J (2013) High performance affinity chromatography (HPAC) as a high-throughput screening tool in drug discovery to study drug-plasma protein interactions. J Pharm Biomed Anal 74:205–212. doi:10.1016/j.jpba.2012.10.030

    Article  CAS  Google Scholar 

  25. de Sain-van der Velden MGM, Diekman EF, Jans JJ, van der Ham M, Prinsen BHCMT, Visser G, Verhoeven-Duif NM (2013) Differences between acylcarnitine profiles in plasma and bloodspots. Mol Genet Metab 110(1–2):116–121. doi:10.1016/j.ymgme.2013.04.008

    Article  Google Scholar 

  26. Tretzel L, Thomas A, Geyer H, Delahaut P, Schanzer W, Thevis M (2015) Determination of Synacthen in dried blood spots for doping control analysis using liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. doi:10.1007/s00216-015-8674-6

    Google Scholar 

  27. Kostic N, Dotsikas Y, Jovic N, Stevanovic G, Malenovic A, Medenica M (2015) Quantitation of pregabalin in dried blood spots and dried plasma spots by validated LC-MS/MS methods. J Pharm Biomed Anal 109:79–84. doi:10.1016/j.jpba.2015.02.023

    Article  CAS  Google Scholar 

  28. Meesters RJ, Hooff GP (2013) State-of-the-art dried blood spot analysis: an overview of recent advances and future trends. Bioanalysis 5(17):2187–2208. doi:10.4155/bio.13.175

    Article  CAS  Google Scholar 

  29. Stillings M, Havlik I, Chetty M, Clinton C, Schall R, Moodley I, Muir N, Little S (2000) Comparison of the pharmacokinetic profiles of soluble aspirin and solid paracetamol tablets in fed and fasted volunteers. Curr Med Res Opin 16(2):115–124

    Article  CAS  Google Scholar 

  30. Thompson JW, Zhang H, Smith P, Hillman S, Moseley MA, Millington DS (2012) Extraction and analysis of carnitine and acylcarnitines by electrospray ionization tandem mass spectrometry directly from dried blood and plasma spots using a novel autosampler. Rapid Commun Mass Spectrom 26(21):2548–2554. doi:10.1002/rcm.6370

    Article  Google Scholar 

Download references

Acknowledgments

M.S., K.K., N.F., and V.H. are employees of Roche Diabetes Care GmbH, Mannheim. The company funded the work. The authors thank Herbert Fink for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Hopf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 731 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siebenhaar, M., Küllmer, K., de Barros Fernandes, N.M. et al. Personalized monitoring of therapeutic salicylic acid in dried blood spots using a three-layer setup and desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 407, 7229–7238 (2015). https://doi.org/10.1007/s00216-015-8887-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8887-8

Keywords

Navigation