Skip to main content
Log in

Imaging mass spectrometry analysis of renal amyloidosis biopsies reveals protein co-localization with amyloid deposits

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Amyloidosis is a heterogeneous group of protein misfolding diseases characterized by deposition of amyloid proteins. The kidney is frequently affected, especially by immunoglobulin light chain (AL) and serum amyloid A (SAA) amyloidosis as the most common subgroups. Current diagnosis relies on histopathological examination, Congo red staining, or electron microscopy. Subtyping is done by immunohistochemistry; however, commercially available antibodies lack specificity. The purpose of this study was to identify and map amyloid proteins in formalin-fixed paraffin-embedded tissue sections using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis in an integrated workflow. Renal amyloidosis and non-amyloidosis biopsies were processed for histological and MS analysis. Mass spectra corresponding to the congophilic areas were directly linked to the histological and MS images for correlation studies. Peptides for SAA and AL were detected by MALDI IMS associated to Congo red-positive areas. Sequence determination of amyloid peptides by LC-MS/MS analysis provided protein distribution and identification. Serum amyloid P component, apolipoprotein E, and vitronectin proteins were identified in both AA and AL amyloidosis, showing a strong correlation with Congo red-positive regions. Our findings highlight the utility of MALDI IMS as a new method to type amyloidosis in histopathological routine material and characterize amyloid-associated proteins that may provide insights into the pathogenetic process of amyloid formation.

Image correlation between hematoxylin and eosin, histochemistry (Congo red), and MALDI IMS of tissue sections from a patient affected with AA-amyloidosis. Hematoxylin and eosin staining (HE) shows glomerular structures (black arrows). Amyloid deposits appear in red in the Congo red-stained section in bright light (CR), and show an apple-green birefringence under polarized light (GB, yellow arrows). MALDI images for m/z = 1456.72, m/z = 1811.89 and m/z = 1156.6 correlate with Congo-red positive areas

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJ et al (2010) Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid Int J Experiment Clin Investig Off J Int Soc Amyloidosis 17(3–4):101–104. doi:10.3109/13506129.2010.526812

    Article  CAS  Google Scholar 

  2. Esplin BL, Gertz MA (2013) Current trends in diagnosis and management of cardiac amyloidosis. Curr Probl Cardiol 38(2):53–96. doi:10.1016/j.cpcardiol.2012.11.002

    Article  Google Scholar 

  3. Linke RP (2012) On typing amyloidosis using immunohistochemistry. Detailed illustrations, review and a note on mass spectrometry. Prog Histochem Cytochem 47(2):61–132. doi:10.1016/j.proghi.2012.03.001

    Article  Google Scholar 

  4. Picken MM, Linke RP (2009) Nephrotic syndrome due to an amyloidogenic mutation in fibrinogen A alpha chain. J Am Soc Nephrol 20(8):1681–1685. doi:10.1681/ASN.2008070813

    Article  Google Scholar 

  5. Desport E, Bridoux F, Sirac C, Delbes S, Bender S, Fernandez B et al (2012) Al amyloidosis. Orphanet J Rare Dis 7:54. doi:10.1186/1750-1172-7-54

    Article  Google Scholar 

  6. Sethi S, Vrana JA, Theis JD, Leung N, Sethi A, Nasr SH et al (2012) Laser microdissection and mass spectrometry-based proteomics aids the diagnosis and typing of renal amyloidosis. Kidney Int 82(2):226–234. doi:10.1038/ki.2012.108

    Article  CAS  Google Scholar 

  7. Linke RP (1980) Amyloid typing using antisera to prototype fibril proteins. A brief note. Mech Ageing Dev 14(1–2):187–190

    Article  CAS  Google Scholar 

  8. Westermark P, Davey E, Lindbom K, Enqvist S (2006) Subcutaneous fat tissue for diagnosis and studies of systemic amyloidosis. Acta Histochem 108(3):209–213. doi:10.1016/j.acthis.2006.03.011

    Article  Google Scholar 

  9. Westermark P, Benson L, Juul J, Sletten K (1989) Use of subcutaneous abdominal fat biopsy specimen for detailed typing of amyloid fibril protein-AL by amino acid sequence analysis. J Clin Pathol 42(8):817–819

    Article  CAS  Google Scholar 

  10. An J, Tang C, Wang N, Liu Y, Guo W, Li X et al (2013) Preliminary study of MALDI-TOF mass spectrometry-based screening of patients with the NSCLC serum-specific peptides. Vol 5

  11. Lavatelli F, Valentini V, Palladini G, Verga L, Russo P, Foli A et al (2011) Mass spectrometry-based proteomics as a diagnostic tool when immunoelectron microscopy fails in typing amyloid deposits. Amyloid Int J Experiment Clin Investig Off J Int Soc Amyloidosis 18(Suppl 1):64–66. doi:10.3109/13506129.2011.574354023

    Article  Google Scholar 

  12. Murphy CL, Wang S, Williams T, Weiss DT, Solomon A (2006) Characterization of systemic amyloid deposits by mass spectrometry. Methods Enzymol 412:48–62. doi:10.1016/S0076-6879(06)12004-2

    CAS  Google Scholar 

  13. Stoppini M, Obici L, Lavatelli F, Giorgetti S, Marchese L, Moratti R et al (2009) Proteomics in protein misfolding diseases. Clin Chem Lab Med 47(6):627–635. doi:10.1515/CCLM.2009.164

    Article  CAS  Google Scholar 

  14. Vrana JA, Gamez JD, Madden BJ, Theis JD, Bergen HR 3rd, Dogan A (2009) Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood 114(24):4957–4959. doi:10.1182/blood-2009-07-230722

    Article  CAS  Google Scholar 

  15. Brambilla F, Lavatelli F, Di Silvestre D, Valentini V, Rossi R, Palladini G et al (2012) Reliable typing of systemic amyloidoses through proteomic analysis of subcutaneous adipose tissue. Blood 119(8):1844–1847. doi:10.1182/blood-2011-07-365510

    Article  CAS  Google Scholar 

  16. Klein CJ, Vrana JA, Theis JD, Dyck PJ, Dyck PJ, Spinner RJ et al (2011) Mass spectrometric-based proteomic analysis of amyloid neuropathy type in nerve tissue. Arch Neurol 68(2):195–199. doi:10.1001/archneurol.2010.261

    Google Scholar 

  17. Miura Y, Harumiya S, Ono K, Fujimoto E, Akiyama M, Fujii N et al (2013) Galectin-7 and actin are components of amyloid deposit of localized cutaneous amyloidosis. Exp Dermatol 22(1):36–40. doi:10.1111/exd.12065

    Article  CAS  Google Scholar 

  18. Castano EM, Maarouf CL, Wu T, Leal MC, Whiteside CM, Lue LF et al (2013) Alzheimer disease periventricular white matter lesions exhibit specific proteomic profile alterations. Neurochem Int 62(2):145–156. doi:10.1016/j.neuint.2012.12.001

    Article  CAS  Google Scholar 

  19. Murphy CL, Eulitz M, Hrncic R, Sletten K, Westermark P, Williams T et al (2001) Chemical typing of amyloid protein contained in formalin-fixed paraffin-embedded biopsy specimens. Am J Clin Pathol 116(1):135–142. doi:10.1309/TWBM-8L4E-VK22-FRH5

    Article  CAS  Google Scholar 

  20. Kaplan M, Kalkan A, Hosoglu S, Kuk S, Ozden M, Demirdag K et al (2004) The frequency of Toxocara infection in mental retarded children. Mem Inst Oswaldo Cruz 99(2):121–125. doi:10.1590/S0074-02762004000200001

    Article  Google Scholar 

  21. Lavatelli F, Perlman DH, Spencer B, Prokaeva T, McComb ME, Theberge R et al (2008) Amyloidogenic and associated proteins in systemic amyloidosis proteome of adipose tissue. Mol Cell Proteome 7(8):1570–1583. doi:10.1074/mcp.M700545-MCP200

    Article  CAS  Google Scholar 

  22. Seldin DC, Sanchorawala V (2012) Amyloidomics comes of age. Blood 119(8):1795–1796. doi:10.1182/blood-2011-10-381178

    Article  CAS  Google Scholar 

  23. Valentini V, Lavatelli F, Obici L, Donadei S, Perlini S, Palladini G et al (2011) Proteomic characterization of amyloid deposits in transthyretin amyloidosis associated with various mutations. Amyloid Int J Experiment Clin Investig Off J Int Soc Amyloidosis 18(Suppl 1):61–63. doi:10.3109/13506129.2011.574354022

    Article  Google Scholar 

  24. Meding S, Walch A (2013) MALDI imaging mass spectrometry for direct tissue analysis. Methods Mol Biol 931:537–546. doi:10.1007/978-1-62703-056-4_29

    CAS  Google Scholar 

  25. Casadonte R, Caprioli RM (2011) Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6(11):1695–1709. doi:10.1038/nprot.2011.388

    Article  CAS  Google Scholar 

  26. Pontil M, Verri A (1998) Properties of support vector machines. Neural Comput 10(4):955–974

    Article  CAS  Google Scholar 

  27. Suckau D, Resemann A, Schuerenberg M, Hufnagel P, Franzen J, Holle A (2003) A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal Bioanal Chem 376(7):952–965. doi:10.1007/s00216-003-2057-0

    Article  CAS  Google Scholar 

  28. Holle A, Haase A, Kayser M, Hohndorf J (2006) Optimizing UV laser focus profiles for improved MALDI performance. J Mass Spectrom 41(6):705–716. doi:10.1002/jms.1041

    Article  CAS  Google Scholar 

  29. Bunker D, Gorevic P (2012) AA amyloidosis: Mount Sinai experience, 1997–2012. Mt Sinai J Med N Y 79(6):749–756. doi:10.1002/msj.21342

    Article  Google Scholar 

  30. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR et al (2006) Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 354(13):1362–1369. doi:10.1056/NEJMoa054494

    Article  CAS  Google Scholar 

  31. Comenzo RL, Zhou P, Fleisher M, Clark B, Teruya-Feldstein J (2006) Seeking confidence in the diagnosis of systemic AL (Ig light-chain) amyloidosis: patients can have both monoclonal gammopathies and hereditary amyloid proteins. Blood 107(9):3489–3491. doi:10.1182/blood-2005-10-4148

    Article  CAS  Google Scholar 

  32. Dember LM (2006) Amyloidosis-associated kidney disease. J Am Soc Nephrol 17(12):3458–3471. doi:10.1681/ASN.2006050460

    Article  CAS  Google Scholar 

  33. Leung N, Nasr SH, Sethi S (2012) How I treat amyloidosis: the importance of accurate diagnosis and amyloid typing. Blood 120(16):3206–3213. doi:10.1182/blood-2012-03-413682

    Article  CAS  Google Scholar 

  34. Fernandez-Flores A (2011) A review of amyloid staining: methods and artifacts. Biotech Histochem Off Publ Biol Stain Comm 86(5):293–301. doi:10.3109/10520291003784493

    Article  CAS  Google Scholar 

  35. Gallo G, Wisniewski T, Choi-Miura NH, Ghiso J, Frangione B (1994) Potential role of apolipoprotein-E in fibrillogenesis. Am J Pathol 145(3):526–530

    CAS  Google Scholar 

  36. Shin TM, Isas JM, Hsieh CL, Kayed R, Glabe CG, Langen R et al (2008) Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin. Mol Neurodegener 3:16. doi:10.1186/1750-1326-3-16

    Article  Google Scholar 

  37. Rocken C, Schwotzer EB, Linke RP, Saeger W (1996) The classification of amyloid deposits in clinicopathological practice. Histopathology 29(4):325–335

    Article  CAS  Google Scholar 

  38. Solomon A, Murphy CL, Westermark P (2008) Unreliability of immunohistochemistry for typing amyloid deposits. Arch Pathol Lab Med 132(1):14. doi:10.1043/1543-2165(2008)132[14b:IR]2.0.CO;2, author reply -5

    Google Scholar 

  39. Brambilla F, Lavatelli F, Merlini G, Mauri P (2013) Clinical proteomics for diagnosis and typing of systemic amyloidoses. Proteomics Clin Appl 7(1–2):136–143. doi:10.1002/prca.201200097

    Article  CAS  Google Scholar 

  40. Picken MM (2007) New insights into systemic amyloidosis: the importance of diagnosis of specific type. Curr Opin Nephrol Hypertens 16(3):196–203. doi:10.1097/MNH.0b013e3280bdc0db

    Article  Google Scholar 

  41. Picken MM (2010) Amyloidosis—where are we now and where are we heading? Arch Pathol Lab Med 134(4):545–551. doi:10.1043/1543-2165-134.4.545

    Google Scholar 

  42. Angel PM, Caprioli RM (2013) Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry 52(22):3818–3828. doi:10.1021/bi301519p

    Article  CAS  Google Scholar 

  43. Gessel MM, Norris JL, Caprioli RM (2014) MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J Proteome. doi:10.1016/j.jprot.2014.03.021

    Google Scholar 

  44. Nakanishi T, Ito M, Nirasawa T, Tsuji M, Takubo T (2013) Topologies of amyloidogenic proteins in Congo red-positive sliced sections of formalin-fixed paraffin embedded tissues by MALDI-MS imaging coupled with on-tissue tryptic digestion. Clin Biochem 46(15):1595–1600. doi:10.1016/j.clinbiochem.2013.05.063

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Martin Schuerenberg (Bruker Daltonik GmbH, Bremen, Germany) for technical support and Vanessa Schommer for her help in the sample preparation procedure.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kriegsmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 10.4 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casadonte, R., Kriegsmann, M., Deininger, SO. et al. Imaging mass spectrometry analysis of renal amyloidosis biopsies reveals protein co-localization with amyloid deposits. Anal Bioanal Chem 407, 5323–5331 (2015). https://doi.org/10.1007/s00216-015-8689-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8689-z

Keywords

Navigation