Skip to main content
Log in

Multidimensional mass spectrometry-based shotgun lipidomics analysis of vinyl ether diglycerides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Diglycerides play a central role in lipid metabolism and signaling in mammalian cells. Although diacylglycerol molecular species comprise the majority of cellular diglycerides that are commonly measured using a variety of approaches, identification of extremely low abundance vinyl ether diglycerides has remained challenging. In this work, representative molecular species from the three diglyceride subclasses (diacyl, vinyl ether, and alkyl ether diglycerides; hereafter referred to as diradylglycerols) were interrogated by mass spectrometric analysis. Product ion mass spectra of the synthesized diradylglycerols with varied chain lengths and degrees of unsaturation demonstrated diagnostic fragmentation patterns indicative of each subclass. Multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) analysis of mouse brain and heart lipid extracts were performed using the identified informative signature product ions. Through an array of tandem mass spectrometric analyses utilizing the orthogonal characteristics of neutral loss scanning and precursor ion scanning, the differential fragmentation of each subclass was exploited for high-yield structural analyses. Although molecular ion mass spectra readily identified diacylglycerol molecular species directly from the hexane fractions of tissue extracts enriched in nonpolar lipids, molecular ion peaks corresponding to ether-linked diglycerides were not observable. The power of MDMS-SL utilizing the tandem mass spectrometric array analysis was demonstrated by identification and profiling of individual molecular species of vinyl ether diglycerides in mouse brain and heart from their undetectable molecular ion peaks during MS1 analysis. Collectively, this technology enabled the identification and profiling of previously inaccessible vinyl ether diglyceride molecular species in mammalian tissues directly from extracts of biologic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leonard TA, Hurley JH (2011) Regulation of protein kinases by lipids. Curr Opin Struct Biol 21(6):785–791. doi:10.1016/j.sbi.2011.07.006

    Article  CAS  Google Scholar 

  2. Makide K, Kitamura H, Sato Y, Okutani M, Aoki J (2009) Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Lipid Mediat 89(3–4):135–139. doi:10.1016/j.prostaglandins.2009.04.009

    Article  CAS  Google Scholar 

  3. Nakamura MT, Yudell BE, Loor JJ (2014) Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 53:124–144. doi:10.1016/j.plipres.2013.12.001

    Article  CAS  Google Scholar 

  4. Poveda JA, Giudici AM, Renart ML, Molina ML, Montoya E, Fernandez-Carvajal A, Fernandez-Ballester G, Encinar JA, Gonzalez-Ros JM (2014) Lipid modulation of ion channels through specific binding sites. Biochim Biophys Acta 1838(6):1560–1567. doi:10.1016/j.bbamem.2013.10.023

    Article  CAS  Google Scholar 

  5. Rolim AE, Henrique-Araujo R, Ferraz EG, de Araujo Alves Dultra FK, Fernandez LG (2014) Lipidomics in the study of lipid metabolism: current perspectives in the omic sciences. Gene 554(2):131–139. doi:10.1016/j.gene.2014.10.039

    Article  Google Scholar 

  6. Brugger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98. doi:10.1146/annurev-biochem-060713-035324

    Article  Google Scholar 

  7. Ecker J, Liebisch G (2014) Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species. Prog Lipid Res 54:14–31. doi:10.1016/j.plipres.2014.01.002

    Article  CAS  Google Scholar 

  8. Junot C, Fenaille F, Colsch B, Becher F (2014) High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom Rev 33(6):471–500. doi:10.1002/mas.21401

    Article  CAS  Google Scholar 

  9. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178. doi:10.1002/mas.20342

    Article  CAS  Google Scholar 

  10. Gross RW, Holcapek M (2014) Lipidomics Anal Chem 86(17):8

    Google Scholar 

  11. Ford DA, Miyake R, Glaser PE, Gross RW (1989) Activation of protein kinase C by naturally occurring ether-linked diglycerides. J Biol Chem 264(23):13818–13824

    CAS  Google Scholar 

  12. Ford DA, Gross RW (1990) Activation of myocardial protein kinase C by plasmalogenic diglycerides. Am J Physiol 258(1 Pt 1):C30–C36

    CAS  Google Scholar 

  13. Ford DA, Rosenbloom KB, Gross RW (1992) The primary determinant of rabbit myocardial ethanolamine phosphotransferase substrate selectivity is the covalent nature of the sn-1 aliphatic group of diradyl glycerol acceptors. J Biol Chem 267(16):11222–11228

    CAS  Google Scholar 

  14. Murphy RC, James PF, McAnoy AM, Krank J, Duchoslav E, Barkley RM (2007) Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. Anal Biochem 366(1):59–70

    Article  CAS  Google Scholar 

  15. Blachnio-Zabielska AU, Zabielski P, Jensen MD (2013) Intramyocellular diacylglycerol concentrations and [U-(1)(3)C]palmitate isotopic enrichment measured by LC/MS/MS. J Lipid Res 54(6):1705–1711

    Article  CAS  Google Scholar 

  16. Mu H, Sillen H, Hiy C-E (2000) Identification of diacylglycerols and triacylglycerols in a structured lipid sample by atmospheric pressure chemical ionization liquid chromatography/mass spectrometry. J Am Oil Chem Soc 77(10):1049–1060. doi:10.1007/s11746-000-0166-6

    Article  CAS  Google Scholar 

  17. Wang M, Hayakawa J, Yang K, Han X (2014) Characterization and quantification of diacylglycerol species in biological extracts after one-step derivatization: a shotgun lipidomics approach. Anal Chem 86(4):2146–2155

    Article  CAS  Google Scholar 

  18. Callender HL, Forrester JS, Ivanova P, Preininger A, Milne S, Brown HA (2007) Quantification of diacylglycerol species from cellular extracts by electrospray ionization mass spectrometry using a linear regression algorithm. Anal Chem 79(1):263–272

    Article  CAS  Google Scholar 

  19. Haag M, Schmidt A, Sachsenheimer T, Brugger B (2012) Quantification of signaling lipids by nano-electrospray ionization tandem mass spectrometry (nano-ESI MS/MS). Metabolites 2(1):57–76

    Article  CAS  Google Scholar 

  20. Han X, Gross RW (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteomics 2(2):253–264

    Article  CAS  Google Scholar 

  21. Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81(11):4356–4368

    Article  CAS  Google Scholar 

  22. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178

    Article  CAS  Google Scholar 

  23. Gross RW, Han X (2011) Lipidomics at the interface of structure and function in systems biology. Chem Biol 18(3):284–291

    Article  CAS  Google Scholar 

  24. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079

    Article  CAS  Google Scholar 

  25. Han X, Gross RW (1995) Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 6(12):1202–1210

    Article  CAS  Google Scholar 

  26. Han X, Gross RW (1994) Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A 91(22):10635–10639

    Article  CAS  Google Scholar 

  27. Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90(1):420–426

    Article  CAS  Google Scholar 

  28. Wittenberg JB, Korey SR, Swenson FH (1956) The determination of higher fatty aldehydes in tissues. J Biol Chem 219(1):39–47

    CAS  Google Scholar 

  29. Han X, Yang K, Gross RW (2008) Microfluidics-based electrospray ionization enhances the intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high-throughput platform for shotgun lipidomics. Rapid Commun Mass Spectrom 22(13):2115–2124

    Article  CAS  Google Scholar 

  30. Gross RW, Jenkins CM, Yang J, Mancuso DJ, Han X (2005) Functional lipidomics: the roles of specialized lipids and lipid-protein interactions in modulating neuronal function. Prostaglandins Lipid Mediat 77(1–4):52–64. doi:10.1016/j.prostaglandins.2004.09.005

    Article  CAS  Google Scholar 

  31. Farooqui AA, Horrocks LA, Farooqui T (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 106(1):1–29

    Article  CAS  Google Scholar 

  32. Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24(2):69–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in whole or in part, by National Institutes of Health Grants RO1HL118639-02 and RO1DK100679-01A1. R. W. G. has financial relationships with LipoSpectrum and Platomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Gross.

Additional information

Published in the topical collection Lipidomics with guest editor Michal Holčapek.

This work was supported, in whole or in part by the National Institutes of Health Grants RO1HL118639-02 and RO1DK100679-01A1. R. W. G. has financial relationships with LipoSpectrum and Platomics.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Jenkins, C.M., Dilthey, B. et al. Multidimensional mass spectrometry-based shotgun lipidomics analysis of vinyl ether diglycerides. Anal Bioanal Chem 407, 5199–5210 (2015). https://doi.org/10.1007/s00216-015-8640-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8640-3

Keywords

Navigation