Skip to main content
Log in

Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS

  • Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have achieved protein imaging mass spectrometry capabilities at sub-cellular spatial resolution and at high acquisition speed by integrating a transmission geometry ion source with time of flight mass spectrometry. The transmission geometry principle allowed us to achieve a 1-μm laser spot diameter on target. A minimal raster step size of the instrument was 2.5 μm. Use of 2,5-dihydroxyacetophenone robotically sprayed on top of a tissue sample as a matrix together with additional sample preparation steps resulted in single pixel mass spectra from mouse cerebellum tissue sections having more than 20 peaks in a range 3–22 kDa. Mass spectrometry images were acquired in a standard step raster microprobe mode at 5 pixels/s and in a continuous raster mode at 40 pixels/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760

    Article  CAS  Google Scholar 

  2. Fenner NC, Daly NR (1966) Laser used for mass analysis. Rev Sci Instrum 37(8):1068–1070. doi:10.1063/1.1720410

    Article  CAS  Google Scholar 

  3. Hillenkamp F, Unsöld E, Kaufmann R, Nitsche R (1975) A high-sensitivity laser microprobe mass analyzer. Appl Phys 8(4):341–348. doi:10.1007/BF00898368

    Article  CAS  Google Scholar 

  4. Vogt H, Heinen HJ, Meier S, Wechsung R (1981) LAMMA 500 principle and technical description of the instrument. Z Anal Chem 308(3):195–200. doi:10.1007/BF00479623

    Article  CAS  Google Scholar 

  5. Dingle T, Griffiths BW, Ruckman JC (1981) LIMA-a laser induced ion mass analyser. Vacuum 31(10–12):571–577. doi:10.1016/0042-207X(81)90069-5

    Article  CAS  Google Scholar 

  6. Van Vaeck L, Struyf H, Van Roy W, Adams F (1994) Organic and inorganic analysis with laser microprobe mass spectrometry. Part I: Instrumentation and methodology. Mass Spectrom Rev 13(3):189–208. doi:10.1002/mas.1280130302

    Article  CAS  Google Scholar 

  7. Zavalin A, Todd EM, Rawhouser PD, Yang JH, Norris JL, Caprioli RM (2012) Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J Mass Spectrom 47(11):1473–1481. doi:10.1002/Jms.3108

    Article  Google Scholar 

  8. Thiery-Lavenant G, Zavalin AI, Caprioli RM (2013) Targeted multiplex imaging mass spectrometry in transmission geometry for subcellular spatial resolution. J Am Soc Mass Spectrom 24(4):609–614. doi:10.1007/s13361-012-0563-z

    Article  CAS  Google Scholar 

  9. Spraggins JM, Caprioli R (2011) High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J Am Soc Mass Spectrom 22(6):1022–1031. doi:10.1007/s13361-011-0121-0

    Article  CAS  Google Scholar 

  10. SimulTOF 200 Combo | SimulTOF Systems. http://www.simultof.com/content/simultof-200-combo.

  11. Ritzau S, Hayden K, Vestal M (2012) Improved MALDI-TOF performance with practical implementation of very high post-acceleration. In: 60th ASMS Conference on Mass Spectrometry and Allied Topics, Vancouver, Canada

  12. Trim P, Djidja M-C, Atkinson S, Oakes K, Cole L, Anderson DG, Hart P, Francese S, Clench M (2010) Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging. Anal Bioanal Chem 397(8):3409–3419. doi:10.1007/s00216-010-3874-6

    Article  CAS  Google Scholar 

  13. Zavalin A, Yang J, Caprioli R (2013) Laser beam filtration for high spatial resolution MALDI imaging mass spectrometry. J Am Soc Mass Spectrom 24(7):1153–1156. doi:10.1007/s13361-013-0638-5

    Article  CAS  Google Scholar 

  14. Fernández-Pradas JM, Colina M, Serra P, Domı J, Morenza JL (2004) Laser-induced forward transfer of biomolecules. Thin Solid Films 453–454:27–30. doi:10.1016/j.tsf.2003.11.154

    Article  Google Scholar 

  15. Yang J, Zavalin A, Caprioli R (2014) Highly robust sample preparation with 2,5-dihydroxyacetophenone for MALDI imaging of proteins (2 -70 kDa) at high spatial resolution (5 μm). In: 62th ASMS Conference on Mass Spectrometry and Allied Topics, Baltimore, MD

  16. Wenzel T, Sparbier K, Mieruch T, Kostrzewa M (2006) 2,5-Dihydroxyacetophenone: a matrix for highly sensitive matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of proteins using manual and automated preparation techniques. Rapid Commun Mass Spectrom 20(5):785-789. doi:10.1002/rcm.2378

  17. Anderson DM, Ablonczy Z, Koutalos Y, Spraggins J, Crouch RK, Caprioli RM, Schey KL (2014) High resolution MALDI imaging mass spectrometry of retinal tissue lipids. J Am Soc Mass Spectrom 25(8):1394-1403. doi: 10.1007/s13361-014-0883-2

    Article  CAS  Google Scholar 

  18. Prophet EB, Armed Forces Institute of Pathology et al (1992) Laboratory methods in histotechnology. American Registry of Pathology, Washington

    Google Scholar 

  19. Burnum KE, Tranguch S, Mi D, Daikoku T, Dey SK, Caprioli RM (2008) Imaging mass spectrometry reveals unique protein profiles during embryo implantation. Endocrinology 149(7):3274–3278. doi:10.1210/en.2008-0309

    Article  CAS  Google Scholar 

  20. Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B (2005) Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom 16(7):1093–1099. doi:10.1016/j.jasms.2005.02.026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank George Mills (SimulTOF Systems) and Boone Prentice and other members of the Vanderbilt Mass Spectrometry Research Center. This project was supported by grants from National Institutes of Health National Institute of General Medical Sciences NIH/NIGMS P41 GM103391-04 and NIH/NIGMS R01 GM058008-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Caprioli.

Additional information

Published in the topical collection Mass Spectrometry Imaging with guest editors Andreas Römpp and Uwe Karst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavalin, A., Yang, J., Hayden, K. et al. Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS. Anal Bioanal Chem 407, 2337–2342 (2015). https://doi.org/10.1007/s00216-015-8532-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8532-6

Keywords

Navigation