Skip to main content
Log in

High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism’s surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 μm retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4 –/– knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mullins, R.F., Skeie, J.M.: Essentials of Retinal Morphology Animals Models for Retinal Diseases, vol. 46. Neuromethods, NY (2010)

    Google Scholar 

  2. Leonardo Da Vinci: Anatomy of the eye, section of a man’s head. Royal Library, Windsor Castle.

  3. Tang, P.H., Kono, M., Koutalos, Y., Ablonczy, Z., Crouch, R.K.: New insights into retinoid metabolism and cycling within the retina. Prog. Retin. Eye Res. 32, 48–63 (2013)

    Article  Google Scholar 

  4. Miyazawa, T., Nakagawa, K., Shimasaki, S., Nagai, R.: Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids 42, 1163–1170 (2012)

    Article  CAS  Google Scholar 

  5. Antonetti, D.A., Klein, R., Gardner, T.W.: Diabetic retinopathy. N. Engl. J. Med. 366, 1227–1239 (2012)

    Article  CAS  Google Scholar 

  6. Allikmets, R., Singh, N., Sun, H., Shroyer, N.F., Hutchinson, A., Chidambaram, A., Gerrard, B., Baird, L., Stauffer, D., Peiffer, A., Rattner, A., Smallwood, P., Li, Y., Anderson, K.L., Lewis, R.A., Nathans, J., Leppert, M., Dean, M., Lupski, J.R.: A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 15, 236–246 (1997)

    Article  CAS  Google Scholar 

  7. Stone, E.M., Webster, A.R., Vandenburgh, K., Streb, L.M., Hockey, R.R., Lotery, A.J., Sheffield, V.C.: Allelic variation in ABCR associated with Stargardt disease but not age-related macular degeneration. Nat. Genet. 20, 328–329 (1998)

    Article  CAS  Google Scholar 

  8. Weng, J., Mata, N.L., Azarian, S.M., Tzekov, R.T., Birch, D.G., Travis, G.H.: Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 98, 13–23 (1999)

    Article  CAS  Google Scholar 

  9. Phelan, J.K., Bok, D.: A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol. Vis. 8, 116–124 (2000)

    Google Scholar 

  10. Chaurand, P., Schriver, K.E., Caprioli, R.M.: Instrument design and characterization for high resolution MALDI-MS imaging of tissue sections. J. Mass Spectrom. 42, 476–489 (2007)

    Article  CAS  Google Scholar 

  11. Jungmann, J.H., MacAleese, L., Buijs, R., Giskes, F., Snaijer, A., Visser, J., Visschers, J., Vrakking, M.J.J., Heeren, R.M.A.: Fast, high resolution mass spectrometry imaging using a medipix pixelated detector. J. Am. Soc. Mass Spectrom. 21, 2023–2030 (2010)

    Article  CAS  Google Scholar 

  12. Klerk, L.A., Altelaar, A.F.M., Froesch, M., McDonnell, L.A., Heeren, R.M.A.: Fast and automated large-area imaging MALDI mass spectrometry in microprobe and microscope mode. Int. J. Mass Spectrom. 285, 19–25 (2009)

    Article  CAS  Google Scholar 

  13. Trim, P.J., Djidja, M.C., Atkinson, S.J., Oakes, K., Cole, L.M., Anderson, D.M., Hart, P.J., Francese, S., Clench, M.R.: Introduction of a 20 kHz Nd, YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging. Anal. Bioanal. Chem. 397, 3409–3419 (2010)

    Article  CAS  Google Scholar 

  14. Holle, A., Haase, A., Kayser, M., Höhndorf, J.: Optimizing UV laser focus profiles for improved MALDI performance. J. Mass Spectrom. 41, 705–716 (2006)

    Article  CAS  Google Scholar 

  15. Zavalin, A., Yang, J., Caprioli, R.M.: Laser beam filtration for high spatial resolution MALDI imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 1153–1156 (2013)

    Article  CAS  Google Scholar 

  16. Seeley, E.H., Oppenheimer, S.R., Mi, D., Chaurand, P., Caprioli, R.M.: Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J. Am. Soc. Mass Spectrom. 19, 1069–1077 (2008)

    Article  CAS  Google Scholar 

  17. Angel, P.M., Spraggins, J.M., Baldwin, H.S., Caprioli, R.M.: Enhanced sensitivity for high spatial resolution lipid imaging by negative ion mode MALDI imaging mass spectrometry. Anal. Chem. 84, 1557–1564 (2012)

    Article  CAS  Google Scholar 

  18. Thomas, A., Charbonneau, J.L., Fournaise, E., Chaurand, P.: Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids, enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal. Chem. 84, 2048–2054 (2012)

    Article  CAS  Google Scholar 

  19. Puolitaival, S.M., Burnum, E.K., Cornett, S.C., Caprioli, R.M.: Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J. Am. Soc. Mass Spectrom. 19, 882–886 (2008)

    Article  CAS  Google Scholar 

  20. Deutskens, F., Junhai, Y., Caprioli, R.M.: High spatial resolution imaging mass spectrometry and classical histology on a single tissue section. J. Mass Spectrom. 46, 568–571 (2011)

    Article  CAS  Google Scholar 

  21. Yang, J., Caprioli, R.M.: Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal. Chem. 83, 5728–5734 (2011)

    Article  CAS  Google Scholar 

  22. Yang, J., Caprioli, R.M.: Matrix precoated targets for direct lipid analysis and imaging of tissue. Anal. Chem. 85, 2907–2912 (2013)

    Article  CAS  Google Scholar 

  23. Hankin, J.A., Barkley, R.M., Murphy, R.C.J.: Sublimation as a method of matrix application for mass spectrometric imaging. J. Am. Soc. Mass Spectrom. 18, 1646–1652 (2007)

  24. Berry, K.A., Hankin, J.A., Barkley, R.M., Spraggins, J.M., Caprioli, R.M., Murphy, R.C.: MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev. 111, 6491–6512 (2011)

    Article  Google Scholar 

  25. Zavalin, A., Todd, E.M., Rawhouser, P.D., Yang, J., Norris, J.L., Caprioli, R.M.: Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J. Mass Spectrom. 47, 1395–1535 (2012)

    Article  Google Scholar 

  26. Schober, Y., Guenther, S., Spengler, B., Roempp, A.: High-resolution matrix-assisted laser desorption/ionization imaging of tryptic peptides from tissue. Rapid Commun. Mass Spectrom. 26, 1141–1146 (2012)

    Article  CAS  Google Scholar 

  27. Altelaar, A.F.M., Taban, I.M., McDonnell, L.A., Verhaert, P.D.E.M., Lange, R.P.J., Adan, R.A.H., Mooi, W.J., Heeren, R.M.A., Piersma, S.R.: High-resolution MALDI imaging mass spectrometry allows localization of peptide distributions at cellular length scales in pituitary tissue sections. Int. J. Mass Spectrom. 260, 203–211 (2007)

    Article  CAS  Google Scholar 

  28. Hayasaka, T., Goto-Inoue, N., Sugiura, Y., Zaima, N., Nakanishi, H., Ohishi, K., Nakanishi, S., Naito, T., Taguchi, R., Setou, M.: Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun. Mass Spectrom. 22, 3415–3426 (2008)

    Article  CAS  Google Scholar 

  29. Roy, M.C., Nakanishi, H., Takahashi, K., Nakanishi, S., Kajihara, S., Hayasaka, T., Setou, M., Ogawa, K., Taguchi, R., Naito, T.: Salamander retina phospholipids and their localization by MALDI imaging mass spectrometry at cellular size resolution. J. Lipid Res. 52, 463–470 (2011)

    Article  CAS  Google Scholar 

  30. Palmer, A.D., Griffiths, R., Styles, I., Claridge, E., Calcagni, A., Bunch, J.: Sucrose cryo-protection facilitates imaging of whole eye sections by MALDI mass spectrometry. J. Mass Spectrom. 47, 237–241 (2012)

    Article  CAS  Google Scholar 

  31. Ford, D.A., Monda, J.K., Brush, R.S., Anderson, R.E., Richards, M.J., Fliesler, S.J.: Lipidomic analysis of the retina in a rat model of Smith-Lemli-Opitz syndrome: alterations in docosahexaenoic acid content of phospholipid molecular species. J. Neurochem. 105, 1032–1047 (2008)

    Article  CAS  Google Scholar 

  32. Acar, N., Berdeaux, O., Grégoire, S., Cabaret, S., Martine, L., Gain, P., Thuret, G., Creuzot-Garcher, C.P., Bron, A.M., Bretillon, L.: Lipid composition of the human eye: are red blood cells a good mirror of retinal and optic nerve fatty acids? PLoS One 7, e35102 (2012)

    Article  CAS  Google Scholar 

  33. Mata, N.L., Weng, J., Travis, G.H.: Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc. Natl. Acad. Sci. U. S. A. 97, 7154–7159 (2000)

    Article  CAS  Google Scholar 

  34. Eldred, G.E., Lasky, M.R.: Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361, 724–726 (1993)

    Article  CAS  Google Scholar 

  35. Rózanowska, M., Wessels, J., Boulton, M., Burke, J.M., Rodgers, M.A., Truscott, T.G., Sarna, T.: Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radic. Biol. Med. 24, 1107–1112 (1998)

    Article  Google Scholar 

  36. Sparrow, J.R., Parish, C.A., Hashimoto, M., Nakanishi, K.: A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest. Ophthalmol. Vis. Sci. 40, 2988–2995 (1999)

    CAS  Google Scholar 

  37. Sparrow, J.R., Nakanishi, K., Parish, C.A.: The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest. Ophthalmol. Vis. Sci. 41, 1981–1989 (2000)

    CAS  Google Scholar 

  38. Klevering, J., Maugeri, A., Wagner, A., Go, S.L., Vink, C., Cremers, F.P.M., Hoyng, C.B.: Three families displaying the combination of Stargardt’s disease with cone-rod dystrophy or retinitis pigmentosa. Am. Acad. Ophthalmol. 111, 546–553 (2004)

    Google Scholar 

  39. 2Mata, N.L., Weng, J., Travis, G.H.: Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc. Natl. Acad. Sci. U. S. A. 97, 7154–7159 (2000)

  40. Grey, A.C., Crouch, R.K., Koutalos, Y., Schey, K.L., Ablonczy, Z.: Spatial localization of A2E in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 52, 3926–3933 (2011)

    Article  Google Scholar 

  41. Garrett, T.J., Menger, R.F., Dawson, W.W., Yost, R.A.: Lipid analysis of flat-mounted eye tissue by imaging mass spectrometry with identification of contaminants in preservation. Anal. Bioanal. Chem. 401, 103–113 (2011)

    Article  CAS  Google Scholar 

  42. Ablonczy, Z., Higbee, D., Anderson, D.M., Dahrouj, M., Grey, A.C., Koutalos, Y., Schey, K.L., Gutierrez, D., Hanneken, A., Crouch, R.K.: Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human RPE. Invest. Ophthalmol. Vis. Sci. 54, 5535–542 (2013)

    Article  CAS  Google Scholar 

  43. Stoeckli, M., Staab, D., Schweitzer, A.: Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int. J. Mass Spectrom. 260, 195–202 (2007)

    Article  CAS  Google Scholar 

  44. Sla´dkova´, K., Housˇka, J., Havel, J.: Laser desorption ionization of red phosphorus clusters and their use for mass calibration in time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3114–3118 (2009)

    Article  Google Scholar 

  45. Burnum, K.E., Cornett, D.S., Puolitaival, S.M., Milne, S.B., Myers, D.S., Tranguch, S., Brown, H.A., Dey, S.K., Caprioli, R.M.: Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J. Lipid Res. 50, 2290–2298 (2009)

    Article  CAS  Google Scholar 

  46. Herrmann, K.A., Somogyi, A., Wysocki, V.H., Drahos, L., Vékey, K.: Combination of sustained off-resonance excitation in FT-ICR. Anal. Chem. 77, 7626–7638 (2005)

    Article  CAS  Google Scholar 

  47. Niedermeyer, T.H.J., Strohalm, M.: mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS ONE 7(9), e44913 (2012)

    Article  CAS  Google Scholar 

  48. Anderson, D.M.G., Mills, D., Spraggins, J., Lambert, W.S., Calkins, D.J., Schey, K.L.: High resolution MALDI-imaging mass spectrometry of lipids in rodent optic nerve tissue. Mol. Vis. 19, 581–592 (2013)

    CAS  Google Scholar 

  49. Hanada, M., Sugiura, Y., Shino, R., Masaki, N., Imagama, S., Ishiguro, N., Matsuyama, Y., Setou, M.: Spatiotemporal alteration of phospholipids and prostaglandins in a rat model of spinal cord injury. Anal. Bioanal. Chem. 403, 1873–1884 (2012)

    Article  CAS  Google Scholar 

  50. Hankin, J.A., Murphy, R.C.: The relationship between MALDI IMS intensity and measured quantity of selected phospholipids in rat brain sections. Anal. Chem. 82, 8476–8484 (2010)

    Article  CAS  Google Scholar 

  51. Rotstein, N.P., Politi, L.E., Aveldaño, M.I.: Docosahexaenoic acid promotes differentiation of developing photoreceptors in culture. Invest. Ophthalmol. Vis. Sci. 39, 2750–2758 (1998)

    CAS  Google Scholar 

  52. Agbaga, M.P., Mandal, M.N., Anderson, R.E.: Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J. Lipid Res. 51, 1624–1642 (2010)

    Article  CAS  Google Scholar 

  53. Fliesler, S.J., Anderson, R.E.: Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22, 79–131 (1983)

    Article  CAS  Google Scholar 

  54. Yamamoto, K., Yoon, K.D., Ueda, K., Hashimoto, M., Sparrow, J.R.: A novel bis-retinoid of retina is an adduct on glycerophosphoethanolamine. Invest. Ophthalmol. Vis. Sci. 25, 9084–9090 (2011)

    Article  Google Scholar 

  55. Ben-Shabat, S., Parish, C.A., Vollmer, H.R., Itagaki, Y., Fishkin, N., Nakanishi, K., Sparrow, J.R.: Biosynthetic studies of A2E, a major fluorophore of retinal pigment epithelial lipofuscin. J. Biol. Chem. 277, 7183–7190 (2002)

    Article  CAS  Google Scholar 

  56. Liu, J., Itagaki, Y., Ben-Shabat, S., Nakanishi, K., Sparrow, J.R.: The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J. Biol. Chem. 275, 29354–29360 (2000)

    Article  CAS  Google Scholar 

  57. Boyer, N.P., Higbee, D., Currin, M.B., Blakeley, L.R., Chen, C., Ablonczy, Z., Crouch, R.K., Koutalos, Y.: Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. J. Biol. Chem. 287, 22276–22286 (2012)

    Article  CAS  Google Scholar 

  58. Bazan, N.G., Calandria, J.M., Serhan, C.N.: Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J. Lipid Res. 51, 2018–2031 (2010)

    Article  CAS  Google Scholar 

  59. Sparrow, J.R., Gregory-Roberts, E., Yamamoto, K., Blonska, A., Ghosh, S.K., Ueda, K., Zhou, J.: The bis-retinoids of retinal pigment epithelium. Prog. Retin. Eye Res. 31, 121–135 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the National Institute of General Medical Sciences (5 P41 GM103391-02), formerly the National Center for Research Resources (5P41RR031461-01). The authors thank Dr. G. H. Travis for providing the original breading pair of Abca4 –/– mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Schey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 786 kb)

High resolution image (DOCX 3.37 MB)

ESM 2

(GIF 454 kb)

ESM 3

(GIF 47 kb)

ESM 4

(GIF 95 kb)

ESM 5

(GIF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, D.M.G., Ablonczy, Z., Koutalos, Y. et al. High Resolution MALDI Imaging Mass Spectrometry of Retinal Tissue Lipids. J. Am. Soc. Mass Spectrom. 25, 1394–1403 (2014). https://doi.org/10.1007/s13361-014-0883-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0883-2

Key words

Navigation