Skip to main content
Log in

Lipidome and metabolome analysis of fresh tobacco leaves in different geographical regions using liquid chromatography–mass spectrometry

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The combination of the lipidome and the metabolome can provide much more information in plant metabolomics studies. A method for the simultaneous extraction of the lipidome and the metabolome of fresh tobacco leaves was developed. Method validation was performed on the basis of the optimal ratio of methanol to methyl tert-butyl ether to water (37:45:68) from the design of experiments. Good repeatability was obtained. We found that 92.2 % and 91.6 % of the peaks for the lipidome and the metabolome were within a relative standard deviation of 20 %, accounting for 94.6 % and 94.6 % of the total abundance, respectively. The intraday and interday precisions were also satisfactory. A total of 230 metabolites, including 129 lipids, were identified. Significant differences were found in lipidomic and metabolomic profiles of fresh tobacco leaves in different geographical regions. Highly unsaturated galactolipids, phosphatidylethanolamines, predominant phosphatidylcholines, most of the polyphenols, amino acids, and polyamines had a higher content in Yunnan province, and low-unsaturation-degree galactolipids, triacylglycerols, glucosylceramides with trihydroxy long-chain bases, acylated sterol glucosides, and some organic acids were more abundant in Henan province. Correlation analysis between differential metabolites and climatic factors indicated the vital importance of temperature. The fatty acid unsaturation degree of galactolipids could be influenced by temperature. Accumulation of polyphenols and decreases in the ratios of stigmasterols to sitosterols and glucosylstigmasterols to glucosylsitosterols were also correlated with lower temperature in Yunnan province. Furthermore, lipids were more sensitive to climatic variations than other metabolites.

Lipidomic and metabolomic profiles of tobacco in different regions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50(6):967–981

    Article  CAS  Google Scholar 

  2. Ge P, Ma C, Wang S, Gao L, Li X, Guo G, Ma W, Yan Y (2012) Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem 402(3):1297–1313

    Article  CAS  Google Scholar 

  3. Capriotti AL, Borrelli GM, Colapicchioni V, Papa R, Piovesana S, Samperi R, Stampachiacchiere S, Lagana A (2014) Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions. Anal Bioanal Chem 406(5):1423–1435

    Article  CAS  Google Scholar 

  4. Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJ (2013) Genetic analysis of metabolome-phenotype interactions: from model to crop species. Trends Genet 29(1):41–50

    Article  CAS  Google Scholar 

  5. Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Sci 69(19):3225–3243

    Article  CAS  Google Scholar 

  6. Vaclavik L, Mishra A, Mishra KB, Hajslova J (2013) Mass spectrometry-based metabolomic fingerprinting for screening cold tolerance in Arabidopsis thaliana accessions. Anal Bioanal Chem 405(8):2671–2683

    Article  CAS  Google Scholar 

  7. Zhang J, Zhang Y, Du Y, Chen S, Tang H (2011) Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10(4):1904–1914

    Article  CAS  Google Scholar 

  8. Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160(3):283–292

    Article  CAS  Google Scholar 

  9. Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277(35):31994–32002

    Article  CAS  Google Scholar 

  10. Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10(8):368–375

    Article  CAS  Google Scholar 

  11. Kueger S, Steinhauser D, Willmitzer L, Giavalisco P (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70(1):39–50

    Article  CAS  Google Scholar 

  12. De Vos RC, Moco S, Lommen A, Keurentjes JJ, Bino RJ, Hall RD (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2(4):778–791

    Article  Google Scholar 

  13. Li L, Zhao C, Chang Y, Lu X, Zhang J, Zhao Y, Zhao J, Xu G (2014) Metabolomics study of cured tobacco using liquid chromatography with mass spectrometry: method development and its application in investigating the chemical differences of tobacco from three growing regions. J Sep Sci 37(9–10):1067–1074

    Article  CAS  Google Scholar 

  14. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    CAS  Google Scholar 

  15. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146

    Article  CAS  Google Scholar 

  16. Chang Y, Zhang L, Lu X, Zhao C, Zhu Z, Wang F, Zhang J, Chen S, Zhao Y, Xu G (2014) A simultaneous extraction method for metabolome and lipidome and its application in cry1Ac and sck-transgenic rice leaf treated with insecticide based on LC–MS analysis. Metabolomics 10(6):1197–1209

    Article  CAS  Google Scholar 

  17. Chen S, Hoene M, Li J, Li Y, Zhao X, Haring HU, Schleicher ED, Weigert C, Xu G, Lehmann R (2013) Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J Chromatogr A 1298:9–16

    Article  CAS  Google Scholar 

  18. Giavalisco P, Li Y, Matthes A, Eckhardt A, Hubberten HM, Hesse H, Segu S, Hummel J, Kohl K, Willmitzer L (2011) Elemental formula annotation of polar and lipophilic metabolites using 13C, 15N and 34S isotope labelling, in combination with high-resolution mass spectrometry. Plant J 68(2):364–376

    Article  CAS  Google Scholar 

  19. Mochizuki T, Ogata Y, Hirata Y, Ohki ST (2014) Quantitative transcriptional changes associated with chlorosis severity in mosaic leaves of tobacco plants infected with Cucumber mosaic virus. Mol Plant Pathol 15(3):242–254

    Article  CAS  Google Scholar 

  20. Fila J, Matros A, Radau S, Zahedi RP, Capkova V, Mock HP, Honys D (2012) Revealing phosphoproteins playing role in tobacco pollen activated in vitro. Proteomics 12(21):3229–3250

    Article  CAS  Google Scholar 

  21. Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet A-M, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J 52(2):263–285

    Article  CAS  Google Scholar 

  22. Smith CA, Want EJ, OMaille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  CAS  Google Scholar 

  23. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78(2):567–574

    Article  CAS  Google Scholar 

  24. Saeed AISV, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):274–278

    Google Scholar 

  25. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109–121

    Article  Google Scholar 

  26. Han X (2002) Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 302(2):199–212

    Article  CAS  Google Scholar 

  27. Shimojima M, Ohta H (2011) Critical regulation of galactolipid synthesis controls membrane differentiation and remodeling in distinct plant organs and following environmental changes. Prog Lipid Res 50(3):258–266

    Article  CAS  Google Scholar 

  28. Williams WP (1998) The physical properties of thylakoid membrane lipids and their relation to photosynthesis. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure function and genetics. Kluwer, Dordrecht, pp 103–115

    Google Scholar 

  29. Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry 67(12):1166–1176

    Article  CAS  Google Scholar 

  30. Silvestro D, Andersen TG, Schaller H, Jensen PE (2013) Plant sterol metabolism. Δ7-Sterol-C5-desaturase (STE1/DWARF7), Δ5,7-sterol-Δ7-reductase (DWARF5) and Δ24-sterol-Δ24-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. PLoS One 8(2):e56429

    Article  CAS  Google Scholar 

  31. Wewer V, Dombrink I, vom Dorp K, Dormann P (2011) Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lipid Res 52(5):1039–1054

    Article  CAS  Google Scholar 

  32. Griebel T, Zeier J (2010) A role for β-sitosterol to stigmasterol conversion in plant–pathogen interactions. Plant J 63(2):254–268

    Article  CAS  Google Scholar 

  33. Warnecke D, Heinz E (2003) Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci 60(5):919–941

    CAS  Google Scholar 

  34. Chen M, Markham JE, Cahoon EB (2012) Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. Plant J 69(5):769–781

    Article  CAS  Google Scholar 

  35. Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281(32):22684–22694

    Article  CAS  Google Scholar 

  36. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  Google Scholar 

  37. Andre CM, Schafleitner R, Legay S, Lefevre I, Aliaga CA, Nomberto G, Hoffmann L, Hausman JF, Larondelle Y, Evers D (2009) Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 70(9):1107–1116

    Article  CAS  Google Scholar 

  38. Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231(6):1237–1249

    Article  CAS  Google Scholar 

  39. Los DA, Mironov KS, Allakhverdiev SI (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 116(2–3):489–509

    Article  CAS  Google Scholar 

  40. Horváth I, Glatz A, Varvasovszki V, Török Z, Páli T, Balogh G, Kovács E, Nádasdi L, Benkö S, Joó F, Vigh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sci U S A 95:3513–3518

    Article  Google Scholar 

  41. Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi AT (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Ann Bot 94(3):345–351

    Article  CAS  Google Scholar 

  42. Schuler I, Milon A, Nakatani Y, Ourisson G, Albrecht AM, Benveniste P, Hartman MA (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc Natl Acad Sci U S A 88(16):6926–6930

    Article  CAS  Google Scholar 

  43. Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: role and biochemical activity in plants and human. Med Plant Res 5(31):6697–6703

    CAS  Google Scholar 

  44. Cotelle N (2001) Role of flavonoids in oxidative stress. Curr Top Med Chem 1(6):569–590

    Article  CAS  Google Scholar 

  45. Pennycooke J, Cox S, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia. Environ Exp Bot 53(2):225–232

    Article  CAS  Google Scholar 

  46. Booij-James IS, Dube SK, Jansen MA, Edelman M, Mattoo AK (2000) Ultraviolet-B radiation impacts light-mediated turnover of the photosystem II reaction center heterodimer in Arabidopsis mutants altered in phenolic metabolism. Plant Physiol 124(3):1275–1284

    Article  CAS  Google Scholar 

  47. Abdulrazzak N, Pollet B, Ehlting J, Larsen K, Asnaghi C, Ronseau S, Proux C, Erhardt M, Seltzer V, Renou JP, Ullmann P, Pauly M, Lapierre C, Werck-Reichhart D (2006) A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140(1):30–48

    Article  CAS  Google Scholar 

  48. Bors W, Langebartels C, Michel C, Sandermann H Jr (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28(6):1589–1595

    Article  CAS  Google Scholar 

  49. Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  50. Caveney S, Charlet DA, Freitag H, Maier-Stolte M, Starratt AN (2001) New observations on the secondary chemistry of world Ephedra. Am J Bot 88(7):1199–1208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Creative Research Group Project (no. 21321064) from National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Zhao.

Additional information

Published in the topical collection Lipidomics with guest editor Michal Holčapek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 652 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Lu, X., Zhao, J. et al. Lipidome and metabolome analysis of fresh tobacco leaves in different geographical regions using liquid chromatography–mass spectrometry. Anal Bioanal Chem 407, 5009–5020 (2015). https://doi.org/10.1007/s00216-015-8522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8522-8

Keywords

Navigation