Skip to main content
Log in

Isotopologue analysis of sugar phosphates in yeast cell extracts by gas chromatography chemical ionization time-of-flight mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metabolic flux analysis is based on the measurement of isotopologue ratios. In this work, a new GC-MS-based method was introduced enabling accurate determination of isotopologue distributions of sugar phosphates in cell extracts. A GC-TOFMS procedure was developed involving a two-step online derivatization (ethoximation followed by trimethylsilylation) offering high mass resolution, high mass accuracy and the potential of retrospective data analysis typical for TOFMS. The information loss due to fragmentation intrinsic for isotopologue analysis by electron ionization could be overcome by chemical ionization with methane. A thorough optimization regarding pressure of the reaction gas, emission current, electron energy and temperature of the ion source was carried out. For a substantial panel of sugar phosphates both of the glycolysis and the pentose phosphate pathway, sensitive determination of the protonated intact molecular ions together with low abundance fragment ions was successfully achieved. The developed method was evaluated for analysis of Pichia pastoris cell extracts. The measured isotopologue ratios were in the range of 55:1–2:1. The comparison of the experimental isotopologue fractions with the theoretical fractions was excellent, revealing a maximum bias of 4.6 % and an average bias of 1.4 %.

Isotopologue distribution of glucose-6-phosphate measured by GC-QTOFMS after derivatization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  CAS  Google Scholar 

  2. Sauer U (2006), Metabolic networks in motion: 13C-based flux analysis. Mol Biosyst 2, doi:10.1038/msb4100109

  3. Zamboni N, Fendt S, Ruehl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  CAS  Google Scholar 

  4. Strelkov S, von Elstermann M, Schomburg D (2004) Comprehensive analysis of metabolite in Corynebacterium glutamicum by gas chromatography / mass spectrometry. Biol Chem 385:853–861

    Article  CAS  Google Scholar 

  5. Koek MM, Muilwijk B, Van-Der-Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78:1272–1281

    Article  CAS  Google Scholar 

  6. Lisec J, Schauer N, Kopla J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  CAS  Google Scholar 

  7. Smart KF, Aggio RBM, Van Houtte JA, Villass-Boas SG (2010) Analytical platform for metabolome analysis of microbial cell using methyl chloroformate derivatization followed by gas chromatography mass spectrometry. Nat Protoc 5:1709–1729

    Article  CAS  Google Scholar 

  8. Cipollina C, ten Pierick A, Canelas AB, Seifar RM, van Maris AJA, van Dam JC, Heijnen JJ (2009) A comprehensive method for the quantification of non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC-IDMS. J Chromatogr B 877:2231–3236

    Article  Google Scholar 

  9. Vielhauer O, Zakhartsev M, Horn T, Takors R, Reuss M (2011) Simplified absolute metabolite quantification by gas chromatography-isotope dilution mass spectrometry on the basis of commercially source material. J Chromatogr B 879:3859–3870

    Article  CAS  Google Scholar 

  10. Ramautar R, Mayboroda OA, Somsen GW, DeJong GJ (2011) CE-MS for metabolomics: developments and applications in the period 2008–2010. Electrophoresis 32:52–65

    Article  CAS  Google Scholar 

  11. Ramautar R, Mayboroda OA, Somsen GW, De Jong GJ (2013) CE-MS for metabolomics: developments and applications in the period 2010–2012. Electrophoresis 34:86–98

    Article  CAS  Google Scholar 

  12. Toya Y, Ishii N, Hirasawa T, Naba M, Hirai K, Sugawara K, Igarashi S, Shimizu K, Tomita M, Soga T (2007) Direct measurement of isotopomer of intracellular metabolites using capillary electrophoresis time of flight mass spectrometry for efficient metabolic flux analysis. J Chromatogr A 1159:134–141

    Article  CAS  Google Scholar 

  13. Harada K, Ohyama Y, Tabushi T, Kobayashi A, Fukusaki A (2008) Quantitative analysis of anionic metabolites for Catharanthus roseus by capillary electrophoresis using sulfonated capillary coupled with electrospray ionization tandem mass spectrometry. J Biosci Bioeng 105:249–260

    Article  CAS  Google Scholar 

  14. Sato S, Yanagisawa S (2010) Capillary electrophoresis electrospray ionization mass spectrometry using fused silica capillaries to profile anionic metabolites. Metabolomics 6:529–540

    Article  CAS  Google Scholar 

  15. Fang Z-Z, Gonzalez FJ (2014) LC-MS-based metabolomics: an update. Arch Toxicol 88:1491–1502

    Article  CAS  Google Scholar 

  16. Siegel D, Permentier H, Reijngoud D-J, Bischoff R (2014) Chemical and technical challenges in the analysis of central carbon metabolites by liquid-chromatography mass spectrometry. J Chromatogr B 966:21–33

    Article  CAS  Google Scholar 

  17. Sun T, Wetzel SJ, Johnson ME, Surlow BA, Patton-Vogt J (2012) Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for quantification of lipids-related extracellular metabolites in Saccharomyces cerevisiae. J Chromatogr B 897:1–9

    Article  CAS  Google Scholar 

  18. Antonio C, Larson T, Gilday A, Graham I, Bergstroem E, Thomas-Oates J (2007) Quantification of sugar and sugar phosphates in Arabidopsis thaliana tissues using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 1172:170–178

    Article  CAS  Google Scholar 

  19. Lu V, Bennett BD, Rabinowitz JD (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B 871:236–242

    Article  CAS  Google Scholar 

  20. Buchholz R, Takors R, Wandrey C (2001) Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatography-electrospray ionization tandem mass spectrometry techniques. Anal Biochem 295:129–137

    Article  CAS  Google Scholar 

  21. Vizan P, Alcarraz-Vizan G, Diaz-Moralli S, Rodriguez-Prados JC, Zanuy M, Centelles JJ, Jauregui O, Cascante M (2007) Quantification of intracellular phosphorylated carbohydrates in HT29 human colon adenocarcinoma cell line using liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 79:5000–5005

    Article  CAS  Google Scholar 

  22. Han J, Tschernutter V, Yang J, Eckle T, Borchers CH (2013) Analysis of selected sugar and sugar phosphates in mouse heart tissue by reductive amination and liquid chromatography electrospray ionization mass spectrometry. Anal Chem 85:5965–5973

    Article  CAS  Google Scholar 

  23. Hinterwirth H, Lämmerhofer M, Preinerstorfer B, Gargano A, Reischl R, Bicker W, Trapp O, Brecker L, Lindner W (2010) Selectivity issues in targeted metabolomics: separation of phosphorylated carbohydrate isomers by mixed mode hydrophilic interaction/weak anion exchange chromatography. J Sep Sci 33:3273–3282

    Article  CAS  Google Scholar 

  24. Huck JHJ, Struys EA, Verhoeven NM, Jakobs C, Van Der Knaap MS (2003) Profiling of pentose phosphates pathway intermediates in blood spots by tandem mass spectrometry: Application to transaldolase deficiency. Clin Chem 49:1375–1380

    Article  CAS  Google Scholar 

  25. Michopoulos F, Whalley N, Theodoridis G, Wilson ID, Dunkley TPJ, Critchlow SE (2014) Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and -ultra high performance liquid chromatography coupled to tandem mass spectrometry: application to serum, urine and tissue extracts. J Chromatogr A 1349:60–68

    Article  CAS  Google Scholar 

  26. Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164

    Article  CAS  Google Scholar 

  27. Buescher JM, Moco S, Sauer U, Zamboni N (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem 82:4403–4412

    Article  CAS  Google Scholar 

  28. Wang Christison TT, Misuno K, Lopez L, Huhmer AF, Huang Y, Hu S (2014) Metabolomic profiling of anionic metabolites in head and neck cancer cells by capillary ion chromatography with orbitrap mass spectrometry. Anal Chem 86:5116–5124

    Article  Google Scholar 

  29. Chu DB, Klavins K, Koellensperger G, Hann S (2014) Speciation analysis of sugar phosphates via anion exchange chromatography combined with inductively coupled plasma dynamic reaction cell mass spectrometry-optimization for the analysis of yeast cell extracts. J Anal At Spectrom 29:915–925

    Article  CAS  Google Scholar 

  30. Klavins K, Chu DB, Koellensperger G, Hann S (2014) Fully automated on-line two-dimensional liquid chromatography in combination with ESI MS/MS detection for quantification of sugar phosphates in yeast cell extracts. Analyst 139:1512–1520

    Article  CAS  Google Scholar 

  31. Werner E, Heiliera JF, Ducruix C, Ezan E, Junot C, Tabet JC (2008) Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends. J Chromatogr B 871:143–163

    Article  CAS  Google Scholar 

  32. Crutchfield CA, Lu W, Melamud E, Rabinowitz JD (2010) Mass spectrometry-based metabolomics of yeast, Chapter 16. In: Abelson J, Simon M, Verdine G, Pyle A (ed) Method in enzymology, 1rd edn. Elsevier

  33. Pasikanti KK, Ho PC, Chan ECY (2008) Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B 871:202–211

    Article  CAS  Google Scholar 

  34. Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30:276–291

    Article  CAS  Google Scholar 

  35. Wittmann C (2007) Fluxome analysis using GC-MS. Microb Cell Factories 6:6. doi:10.1186/1475-2859-6-6

    Article  Google Scholar 

  36. Warren CR (2013) Use of chemical ionization for GC-MS metabolite profiling. Metabolomics 9:110–120

    Article  CAS  Google Scholar 

  37. Abate S, Ahn YG, Kind T, Cataldl TRI, Fiehn O (2010) Determination of elemental compositions by gas chromatography/time-of-flight mass spectrometry using chemical and electron ionization. Rapid Commun Mass Spectrom 24:1172–1180

    Article  CAS  Google Scholar 

  38. Portoles T, Pitarch E, Lopez FJ, Hernandez F, Niessen WMA (2011) Use of soft and hard ionization techniques for elucidation of unknown compounds by gas chromatography/time of flight mass spectrometry. Rapid Commun Mass Spectrom 25:1589–1599

    Article  CAS  Google Scholar 

  39. Neubauer S, Haberhauer-Troyer C, Klavins K, Russmayer H, Steiger MG, Gasser B, Sauer M, Mattanovich D, Hann S, Koellensperger G (2012) U13C cell extract of Pichia pastoris—a powerful tool for evaluation of sample preparation in metabolomics. J Sep Sci 35:3091–3105

    Article  CAS  Google Scholar 

  40. VanDenDool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr 11:463–471

    Article  CAS  Google Scholar 

  41. Troyer C, Koellensperger G, Hann S. GC-EI-MS/MS with just in time online derivatization for accurate quantification of primary metabolites in biotechnological samples, in preparation

  42. http://www.envipat.eawag.ch/index.php, accessed 20 August 2014

  43. Schoots AC, Leclercq PA (1979) Chemical ionization mass spectrometry of trimethylsilylated carbohydrates and organic acids retained in uremic serum. Biomed Mass Spectrom 6:502–507

    Article  CAS  Google Scholar 

  44. Harvey DJ, Horning MG (1973) Characterization of the trimethylsilyl derivatives of sugar phosphates and related compounds by gas chromatography and gas chromatography mass spectrometry. J Chromatogr 76:51–62

    Article  CAS  Google Scholar 

  45. Gross JH (2011) Chapter 7 in Mass spectrometry, 2nd ed, Springer

  46. Harrison AG (1992) Chemical ionization mass spectrometry, 2nd ed, CRC

  47. Magnusson B, Örnemark U (eds) (2014) Eurachem Guide: the fitness for purpose of analytical methods – a laboratory guide to method validation and related topics (2nd ed.), ISBN 978-91-87461-59-0. Available from http://www.eurachem.org

  48. Quek L-E, Wittmann C, Nielsen LK, Krömer JO (2009) OpenFLUX: efficient modelling software for 13 C-based metabolic flux analysis. Microb Cell Factories 8:25. doi:10.1186/1475-2859-8-25

    Article  Google Scholar 

  49. Weitzel M, Noeh K, Dalman T, Niedenführ S, Stute B, Wiechert W (2013) 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29(1):143–145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dinh Binh Chu gratefully acknowledges Erasmus Mundus Action 2 (www.eurasia2.cz) for financial support. EQ BOKU Vienna is acknowledged for providing mass spectrometric instrumentation. This work has been supported by the Austrian BMWFJ, BMVIT, SFG, Standortagentur Tirol and ZIT through the Austrian FFG-COMET-Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Hann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, D.B., Troyer, C., Mairinger, T. et al. Isotopologue analysis of sugar phosphates in yeast cell extracts by gas chromatography chemical ionization time-of-flight mass spectrometry. Anal Bioanal Chem 407, 2865–2875 (2015). https://doi.org/10.1007/s00216-015-8521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8521-9

Keywords

Navigation