Skip to main content
Log in

Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In turbid biogenic liquid material, like blood or milk, quantitative optical analysis is often strongly hindered by multiple light scattering resulting from cells, particles, or droplets. Here, optical attenuation is caused by losses due to absorption as well as scattering of light. Fiber-based Photon Density Wave (PDW) spectroscopy is a very promising method for the precise measurement of the optical properties of such materials. They are expressed as absorption and reduced scattering coefficients (μ a and μ s′, respectively) and are linked to the chemical composition and physical properties of the sample. As a process analytical technology, PDW spectroscopy can sense chemical and/or physical processes within such turbid biogenic liquids, providing new scientific insight and process understanding. Here, for the first time, several bioprocesses are analyzed by PDW spectroscopy and the resulting optical coefficients are discussed with respect to established mechanistic models of the chosen processes. As model systems, enzymatic casein coagulation in milk, temperature-induced starch hydrolysis in beer mash, and oxy- as well as deoxygenation of human donor blood were investigated by PDW spectroscopy. The findings indicate that also for very complex biomaterials (i.e., not well-defined model materials like monodisperse polymer dispersions), obtained optical coefficients allow for the assessment of a structure/process relationship and thus for a new analytical access to biogenic liquid material. This is of special relevance as PDW spectroscopy data are obtained without any dilution or calibration, as often found in conventional spectroscopic approaches.

Green Photon Density Wave created at the end of an optical fiber in beer mash, as new analytical tool for the in-line monitoring of (bio)chemical processes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fishkin JB, Fantini S, van de Ven MJ, Gratton E (1996) Phys Rev E 53:2307–2319

    Article  CAS  Google Scholar 

  2. Sun Z, Huang Y, Sevick-Muraca EM (2002) Rev Sci Instrum 73:383–393

    Article  CAS  Google Scholar 

  3. Reich O, Loehmannsroeben HG, Schael F (2003) Phys Chem Chem Phys 5:5182–5187

    Article  CAS  Google Scholar 

  4. Bressel L, Hass R, Reich O (2013) JQRST 126:122–129

    CAS  Google Scholar 

  5. Cletus B, Kuennemeyer R, Martinsen P, McGlone VA (2010) J Biomed Opt 15:017003-1–6

    Article  Google Scholar 

  6. Tanguchi J, Murata H, Okamura Y (2010) Colloids Surf B 76:137–144

    Article  CAS  Google Scholar 

  7. Hass R, Reich O (2011) ChemPhysChem 12:2572–2575

    Article  CAS  Google Scholar 

  8. Hass R, Muenzberg M, Bressel L, Reich O (2013) Appl Opt 52:1423–1431

    Article  Google Scholar 

  9. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  10. Richter SM, Shinde RR, Balgi GV, Sevick-Muraca EM (1998) Part Part Syst Charact 15:9–15

    Article  CAS  Google Scholar 

  11. Reich O, Bressel L, Hass R (2011) Proc SPIE 7753:77532J–77532J-4

    Article  Google Scholar 

  12. Toepel A (2007) Chemie und Physik der Milch, Naturstoff Rohstoff Lebensmittel. B. Behr’s Verlag, Hamburg

    Google Scholar 

  13. Ion Titapiccolo G, Alexander M, Corredig M (2010) Dairy Sci Technol 90:623–639

    Article  Google Scholar 

  14. Ong L, Dagastine RR, Kentish SE, Gras SL (2010) J Food Sci 75:E135–E145

    Article  CAS  Google Scholar 

  15. Fox PF, McSweeney PLH (2006) Advanced dairy chemistry, volume 2, lipids. Springer Science + Business Media, New York

    Book  Google Scholar 

  16. Mitzscherling M (2004) Prozessanalyse des Maischens mittels statistischer Modellierung. Technical University Munich. Dissertation

  17. Montanari L, Floridi S, Marconi O, Tironzelli M, Fantozzi P (2005) Eur Food Res Technol 221:175–179

    Article  CAS  Google Scholar 

  18. Dickel T (2003) Untersuchungen zu enzymatischen Abbauprodukten beim Maischen im Hinblick auf die Entwicklung eines Prozessführungssystems. Technical University Munich. Dissertation

  19. Kuehbeck F, Back W, Krottenthaler M, Kurz T (2007) AIChE J 53:1373–1388

    Article  CAS  Google Scholar 

  20. Bamforth CW (2009) Beer, a quality perspective. Academic, Burlington

    Google Scholar 

  21. Tippmann J, Lauer J, Voigt J, Sommer K (2011) Brauindustrie 8:40–43

    Google Scholar 

  22. Choi J, Wolf M, Toronov V, Wolf U, Polzonetti C, Hueber D, Safonova LP, Gupta R, Michalos A, Mantulin W, Gratton E (2004) J Biomed Opt 9:221–229

    Article  Google Scholar 

  23. Fishkin JB, Coquoz O, Anderson ER, Brenner M, Tromberg BJ (1997) Appl Opt 36:10–20

    Article  CAS  Google Scholar 

  24. Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Neoplasia 2:26–40

    Article  CAS  Google Scholar 

  25. Meinke M, Müller G, Helfmann J, Friebel M (2007) J Biomed Opt 12:014024-1–014024-9

    Article  Google Scholar 

  26. Sultanova NG, Nikolov ID, Ivanov CD (2003) Opt Quant Electron 35:21–34

    Article  CAS  Google Scholar 

  27. Laporte MF, Martel R, Paquin P (1998) Int Dairy J 8:659–666

    Article  CAS  Google Scholar 

  28. Najera AI, de Renobales M, Barron LJR (2003) Food Chem 80:345–352

    Article  CAS  Google Scholar 

  29. O’Callaghan DJ, O’Donnell CP, Payne FA (2002) Int J Dairy Technol 55:65–74

    Article  Google Scholar 

  30. Vargas Ruiz S, Hass R, Reich O (2012) Int Dairy J 26:120–126

    Article  CAS  Google Scholar 

  31. Ustunol Z, Hicks CL, Payne FA (1991) J Food Sci 56:411–415

    Article  CAS  Google Scholar 

  32. Castillo M, Payne FA, Hicks CL, Lopez MB (2000) Int Dairy J 10:551–562

    Article  CAS  Google Scholar 

  33. McMahon DJ, Brown RJ (1990) Colloids Surf 44:263–279

    Article  CAS  Google Scholar 

  34. O’Callaghan DJ, O’Donnell CP, Payne FA (2000) J Food Eng 43:155–165

    Article  Google Scholar 

  35. Sandra S, Alexander M, Dalgleish DG (2007) J Colloid Interface Sci 308:364–373

    Article  CAS  Google Scholar 

  36. Roggan A, Friebel M, Dörschel K, Hahn A, Müller G (1999) J Biomed Opt 4:36–46

    Article  CAS  Google Scholar 

  37. Yang Y, Liu H, Li X, Chance B (1997) Opt Eng 36:1562–1569

    Article  Google Scholar 

  38. Pope RM, Fry ES (1997) Appl Opt 36:8710–8723

    Article  CAS  Google Scholar 

  39. Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT (1995) Anal Biochem 227:54–68

    Article  CAS  Google Scholar 

  40. Löffler G, Petrides PE, Heinrich PC (eds) (2007) Biochemie und Pathobiochemie. Springer Medizin Verlag, Heidelberg

    Google Scholar 

  41. Voet D, Voet JG (2011) Biochemistry. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgments

We like to thank Anita Fuge for fruitful discussions and help with the milk experiments and Hans Scheuren for his help with the mashing experiments. We appreciate support by Hans Bäumler and Radostina Georgieva from the Institute for Transfusion Medicine, Charité Berlin. Furthermore, we like to acknowledge the financial support from the German Federal Ministry of Economics and Technology (grant no. 16IN0418) and the German Federal Ministry of Education and Research (grant no. 03Z2AN12).

Contributions

The authors contributed differently to this paper: D.M. worked on the monitoring of the blood oxygenation, S.V.R. on enzymatic milk coagulation, and J.T. on beer mashing. R.H. and O.R. oversaw the experiments, and R.H. and D.M. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Hass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hass, R., Munzke, D., Vargas Ruiz, S. et al. Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy. Anal Bioanal Chem 407, 2791–2802 (2015). https://doi.org/10.1007/s00216-015-8513-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8513-9

Keywords

Navigation