Skip to main content
Log in

In-Line Monitoring of a High-Shear Granulation Process Using the Baseline Shift of Near Infrared Spectra

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Although near infrared (NIR) spectra are primarily influenced by undesired variations, i.e., baseline shifts and non-linearity, and many applications of NIR spectroscopy to the real-time monitoring of wet granulation processes have been reported, the granulation mechanisms behind these variations have not been fully discussed. These variations of NIR spectra can be canceled out using appropriate pre-processing techniques prior to spectral analysis. The present study assessed the feasibility of directly using baseline shifts in NIR spectra to monitor granulation processes, because such shifts can reflect changes in the physical properties of the granular material, including particle size, shape, density, and refractive index. Specifically, OPUSGRAN®, a novel granulation technology, was investigated by in-line NIR monitoring. NIR spectra were collected using a NIR diffuse reflectance fiber optic probe immersed in a high-shear granulator while simultaneously examining the morphology, particle size, density, strength, and Raman images of the mixture during granulation. The NIR baseline shift pattern was found to be characteristic of the OPUSGRAN® technology and was attributed to variations in the light transmittance, reflection, and scattering resulting from changes in the physicochemical properties of the samples during granulation. The baseline shift also exhibited an inflection point around the completion of granulation, and therefore may be used to determine the endpoint of the process. These results suggest that a specific pattern of NIR baseline shifts are associated with the unique OPUSGRAN® granulation mechanism and can be applied to monitor the manufacturing process and determine the endpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Administration FDA. Guidance for industry PAT —a framework for innovative pharmaceutical development, manufacturing, and quality Assurance. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070305.pdf. 2004. Accessed 03 Jul 2017.

  2. De Bleye C, Chavez PF, Mantanus J, Marini R, Hubert P, Rozet E, et al. Critical review of near-infrared spectroscopic methods validations in pharmaceutical applications. J Pharm Biomed Anal. 2012;69:125–32.

    Article  PubMed  Google Scholar 

  3. Luypaert J, Massart DL, Vander HY. Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta. 2007;72(3):865–83.

    Article  CAS  PubMed  Google Scholar 

  4. Maltesen MJ, van de Weert M, Grohganz H. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy. AAPS PharmSciTech. 2012;13(3):747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naidu VR, Deshpande RS, Syed MR, Deoghare P, Singh D, Wakte PS. PAT-based control of fluid bed coating process using NIR spectroscopy to monitor the cellulose coating on pharmaceutical pellets. AAPS PharmSciTech. 2017;18(6):2045–54.

    Article  CAS  PubMed  Google Scholar 

  6. Scheibelhofer O, Balak N, Wahl PR, Koller DM, Glasser BJ, Khinast JG. Monitoring blending of pharmaceutical powders with multipoint NIR spectroscopy. AAPS PharmSciTech. 2013;14(1):234–44.

    Article  CAS  PubMed  Google Scholar 

  7. Helmdach L, Feth MP, Minnich C, Ulrich J. Application of ATR-MIR spectroscopy in the pilot plant—scope and limitations using the example of paracetamol crystallizations. Chem Eng Process Process Intensif. 2013;70:184–97.

    Article  CAS  Google Scholar 

  8. Lewiner F, Klein JP, Puel F, Févotte G. On-line ATR FTIR measurement of supersaturation during solution crystallization processes. Calibration and applications on three solute/solvent systems. Chem Eng Sci. 2001;56(6):2069–84.

    Article  CAS  Google Scholar 

  9. Pollanen K, Hakkinen A, Reinikainen SP, Rantanen J, Karjalainen M, Louhi-Kultanen M, et al. IR spectroscopy together with multivariate data analysis as a process analytical tool for in-line monitoring of crystallization process and solid-state analysis of crystalline product. J Pharm Biomed Anal. 2005;38(2):275–84.

    Article  PubMed  Google Scholar 

  10. Togkalidou T, Tung H-H, Sun Y, Andrews A, Braatz RD. Solution concentration prediction for pharmaceutical crystallization processes using robust chemometrics and ATR FTIR spectroscopy. Org Process Res Dev. 2002;6(3):317–22.

    Article  CAS  Google Scholar 

  11. Yu LX, Lionberger RA, Raw AS, D'Costa R, Wu H, Hussain AS. Applications of process analytical technology to crystallization processes. Adv Drug Deliv Rev. 2004;56(3):349–69.

    Article  CAS  PubMed  Google Scholar 

  12. De Beer TR, Baeyens WR, Ouyang J, Vervaet C, Remon JP. Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension. Analyst. 2006;131(10):1137–44.

    Article  PubMed  Google Scholar 

  13. De Beer TR, Bodson C, Dejaegher B, Walczak B, Vercruysse P, Burggraeve A, et al. Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process. J Pharm Biomed Anal. 2008;48(3):772–9.

    Article  PubMed  Google Scholar 

  14. Saerens L, Dierickx L, Lenain B, Vervaet C, Remon JP, De Beer T. Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur J Pharm Biopharm. 2011;77(1):158–63.

    Article  CAS  PubMed  Google Scholar 

  15. Wirges M, Funke A, Serno P, Knop K, Kleinebudde P. Development and in-line validation of a process analytical technology to facilitate the scale up of coating processes. J Pharm Biomed Anal. 2013;78-79:57–64.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Ying Y, Pielecha-Safira B, Bilgili E, Ramachandran R, Romanach R, et al. Raman spectroscopy for in-line and off-line quantification of poorly soluble drugs in strip films. Int J Pharm. 2014;475(1–2):428–37.

    Article  CAS  PubMed  Google Scholar 

  17. De Beer T, Burggraeve A, Fonteyne M, Saerens L, Remon JP, Vervaet C. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm. 2011;417(1–2):32–47.

    Article  PubMed  Google Scholar 

  18. Laske S, Paudel A, Scheibelhofer O. A review of PAT strategies in secondary solid oral dosage manufacturing of small molecules. J Pharm Sci. 2017;106(3):667–712.

    Article  CAS  PubMed  Google Scholar 

  19. Simon LL, Pataki H, Marosi G, Meemken F, Hungerbühler K, Baiker A, et al. Assessment of recent process analytical technology (PAT) trends: a multiauthor review. Org Process Res Dev. 2015;19(1):3–62.

    Article  CAS  Google Scholar 

  20. Alcala M, Blanco M, Bautista M, Gonzalez JM. On-line monitoring of a granulation process by NIR spectroscopy. J Pharm Sci. 2010;99(1):336–45.

    Article  CAS  PubMed  Google Scholar 

  21. Jorgensen AC, Luukkonen P, Rantanen J, Schaefer T, Juppo AM, Yliruusi J. Comparison of torque measurements and near-infrared spectroscopy in characterization of a wet granulation process. J Pharm Sci. 2004;93(9):2232–43.

    Article  CAS  PubMed  Google Scholar 

  22. Jorgensen AC, Rantanen J, Luukkonen P, Laine S, Yliruusi J. Visualization of a pharmaceutical unit operation: wet granulation. Anal Chem. 2004;76(18):5331–8.

    Article  CAS  PubMed  Google Scholar 

  23. Li W, Worosila GD, Wang W, Mascaro T. Determination of polymorph conversion of an active pharmaceutical ingredient in wet granulation using NIR calibration models generated from the premix blends. J Pharm Sci. 2005;94(12):2800–6.

    Article  CAS  PubMed  Google Scholar 

  24. Luukkonen P, Fransson M, Bjorn IN, Hautala J, Lagerholm B, Folestad S. Real-time assessment of granule and tablet properties using in-line data from a high-shear granulation process. J Pharm Sci. 2008;97(2):950–9.

    Article  CAS  PubMed  Google Scholar 

  25. Rantanen J, Rasanen E, Tenhunen J, Kansakoski M, Mannermaa J, Yliruusi J. In-line moisture measurement during granulation with a four-wavelength near infrared sensor: an evaluation of particle size and binder effects. Eur J Pharm Biopharm. 2000;50(2):271–6.

    Article  CAS  PubMed  Google Scholar 

  26. Rantanen J, Wikstrom H, Turner R, Taylor LS. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes. Anal Chem. 2005;77(2):556–63.

    Article  CAS  PubMed  Google Scholar 

  27. Tok AT, Goh X, Ng WK, Tan RB. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed. AAPS PharmSciTech. 2008;9(4):1083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rinnan Å, Fvd B, Engelsen SB. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal Chem. 2009;28(10):1201–22.

    Article  CAS  Google Scholar 

  29. Asada T, Kobiki M, Ochiai Y, Iwao Y, Itai S. An innovative method for the preparation of high API-loaded hollow spherical granules for use in controlled-release formulation. Int J Pharm. 2017;523(1):167–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Takumi Asada and Mitsuaki Kobiki for helpful advice regarding the OPUSGRAN® granulation technique and also thank Ryo Omata for manufacturing support and Akiko Okada for assistance during data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kuriyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuriyama, A., Osuga, J., Hattori, Y. et al. In-Line Monitoring of a High-Shear Granulation Process Using the Baseline Shift of Near Infrared Spectra. AAPS PharmSciTech 19, 710–718 (2018). https://doi.org/10.1208/s12249-017-0882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0882-2

KEY WORDS

Navigation