Skip to main content
Log in

The minimizing of fluorescence background in Raman optical activity and Raman spectra of human blood plasma

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Raman optical activity (ROA) is inherently sensitive to the secondary structure of biomolecules, which makes it a method of interest for finding new approaches to clinical applications based on blood plasma analysis, for instance the diagnostics of several protein-misfolding diseases. Unfortunately, real blood plasma exhibits strong background fluorescence when excited at 532 nm; hence, measuring the ROA spectra appears to be impossible. Therefore, we established a suitable method using a combination of kinetic quenchers, filtering, photobleaching, and a mathematical correction of residual fluorescence. Our method reduced the background fluorescence approximately by 90 %, which allowed speedup for each measurement by an average of 50 %. In addition, the signal-to-noise ratio was significantly increased, while the baseline distortion remained low. We assume that our method is suitable for the investigation of human blood plasma by ROA and may lead to the development of a new tool for clinical diagnostics.

The effect of a newly developed fluorescence quenching method for the ROA measurements of human blood plasma

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barron LD, Hecht L, Blanch EW, Bell AF (2000) Prog Biophys Mol Biol 73:1–49

    Article  CAS  Google Scholar 

  2. Berova N, Polavarapu PL, Nakanishi K, Woody RW (2012) Comprehensive chiroptical spectroscopy. Wiley, New Jersey

    Book  Google Scholar 

  3. Nafie LA (2011) Vibrational optical activity: principles and applications. Wiley, New York

    Book  Google Scholar 

  4. He Y, Bo W, Dukor RK, Nafie LA (2011) Appl Spectrosc 65:699–723

    Article  CAS  Google Scholar 

  5. Shah RD, Nafie LA (2001) Curr Opin Drug Discov Dev 4:764–775

    CAS  Google Scholar 

  6. Urbanová M, Setnička V, Volka K (2000) Chirality 12:199–203

    Article  Google Scholar 

  7. Julínek O, Setnička V, Řezáčová A, Dohnal J, Vosátka V, Urbanová M (2010) J Pharm Biomed Anal 53:958–961

    Article  Google Scholar 

  8. Synytsya A, Judexová M, Hrubý T, Tatarkovič M, Miškovičová M, Petruželka L, Setnička V (2013) Anal Bioanal Chem 405:5441–5453

    Article  CAS  Google Scholar 

  9. Tatarkovič M, Fišar Z, Raboch J, Jirák R, Setnička V (2012) Chirality 24:951–955

    Article  Google Scholar 

  10. Tatarkovič M, Kykal S, Synytsya A, Miškovičová M, Petruželka L, Setnička V (2013) Eur Biophys J 42:S107–S107

  11. Minde DP, Anvarian Z, Rudiger SG, Maurice MM (2011) Mol Cancer 10:101

    Article  CAS  Google Scholar 

  12. Querfurth HW, LaFerla FM (2010) N Engl J Med 362:329–344

    Article  CAS  Google Scholar 

  13. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) Alzheimers Dement 7:270–279

    Article  Google Scholar 

  14. Chari ST (2007) Semin Oncol 34:284–294

    Article  CAS  Google Scholar 

  15. Adelstein B-A, Macaskill P, Chan S, Katelaris P, Irwig L (2011) BMC Gastroenterol 11:65

    Article  Google Scholar 

  16. Blanch EW, Hecht L, Syme CD, Volpetti V, Lomonossoff GP, Nielsen K, Barron LD (2002) J Gen Virol 83:2593–2600

    CAS  Google Scholar 

  17. Barron LD (2013) Raman optical activity studies of structure and behavior of biomolecules. In: Roberts GK (ed) Encyclopedia of biophysics. Springer, Berlin

  18. Člupek M, Matějka P, Volka K (2007) J Raman Spectrosc 38:1174–1179

    Article  Google Scholar 

  19. Bekhouche M, Blum LJ, Doumèche B (2011) J Phys Chem B 116:413–423

    Article  Google Scholar 

  20. Chmyrov A, Sandén T, Widengren J (2010) J Phys Chem B 114:11282–11291

    Article  CAS  Google Scholar 

  21. Murray RK, Granner DK, Mayes PA, Rodwell VW (2003) Harper’s illustrated biochemistry (26th edition). McGraw-Hill, New York

    Google Scholar 

  22. Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W (2011) Pharm Res 28:920–933

    Article  Google Scholar 

  23. Hug W (1981) Appl Spectrosc 35:115–124

    Article  CAS  Google Scholar 

  24. Jonathan N (1961) J Mol Spectrosc 6:205–214

    Article  CAS  Google Scholar 

  25. Garrett R, Grisham CM (1995) Biochemistry. Saunders College Pub, Belmont

    Google Scholar 

  26. Barron LD, Buckingham AD (2010) Chem Phys Lett 492:199–213

    Article  CAS  Google Scholar 

  27. Hames BD, Hooper NM (2005) Instant notes in biochemistry. Taylor & Francis, Abingdon

    Google Scholar 

  28. Darvin ME, Gersonde I, Albrecht H, Sterry W, Lademann J (2007) Laser Phys Lett 4:452–456

    Article  CAS  Google Scholar 

  29. Hata TR, Scholz TA, Ermakov IV, McClane RW, Khachik F, Gellermann W, Pershing LK (2000) J Investig Dermatol 115:441–448

    Article  CAS  Google Scholar 

  30. Redd DCB, Feng ZC, Yue KT, Gansler TS (1993) Appl Spectrosc 47:787–791

    Article  CAS  Google Scholar 

  31. Schulte F, Mäder J, Kroh LW, Panne U, Kneipp J (2009) Anal Chem 81:8426–8433

    Article  CAS  Google Scholar 

  32. Stone N, Kendall C, Smith J, Crow P, Barr H (2004) Faraday Discuss 126:141–157

    Article  CAS  Google Scholar 

  33. Ollberding NJ, Maskarinec G, Conroy SM, Morimoto Y, Franke AA, Cooney RV, Wilkens LR, Le Marchand L, Goodman MT, Hernandez BY, Henderson BE, Kolonel LN (2012) Blood 119:5817–5823

    Article  CAS  Google Scholar 

  34. Parker RS (1989) J Nutr 119:101–104

    CAS  Google Scholar 

  35. Urbanová M (2009) Chirality 21:E215–E230

    Article  Google Scholar 

  36. Kinalwa MN, Blanch EW, Doig AJ (2010) Anal Chem 82:6347–6349

    Article  CAS  Google Scholar 

  37. Puppels GJ, Olminkhof JHF, Segers-Nolten GMJ, Otto C, Mul FFM, Greve J (1991) Exp Cell Res 195:361–367

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Ministry of Health of the Czech Republic (Grant No. NT13259-3) and partly by Specific University Research MSMT No. 20/2013 - A1_FCHI_2013_003 and A2_FCHI_2013_003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Setnička.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatarkovič, M., Synytsya, A., Šťovíčková, L. et al. The minimizing of fluorescence background in Raman optical activity and Raman spectra of human blood plasma. Anal Bioanal Chem 407, 1335–1342 (2015). https://doi.org/10.1007/s00216-014-8358-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8358-7

Keywords

Navigation