Skip to main content
Log in

Analysis of human blood plasma and hen egg white by chiroptical spectroscopic methods (ECD, VCD, ROA)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chiroptical methods are widely used in structural and conformational analyses of biopolymers. The application of these methods to investigations of biofluids would provide new avenues for the molecular diagnosis of protein-misfolding diseases. In this work, samples of human blood plasma and hen egg white were analyzed using a combination of conventional and chiroptical methods: ultraviolet absorption/electronic circular dichroism (UV/ECD), Fourier transform infrared absorption/vibrational circular dichroism (FTIR/VCD), and Raman scattering/Raman optical activity (Raman/ROA). For comparison, the main components of these substances—human serum albumin (HSA) and ovalbumin (Ova)—were also analyzed by these methods. The ultraviolet region of the ECD spectrum was analyzed using the CDNN CD software package to evaluate the secondary structures of the proteins. The UV/ECD, FTIR/VCD, and Raman/ROA spectra of the substances were quite similar to those of the corresponding major proteins, while some differences were also detected and explained. The conclusions drawn from the FTIR/VCD and Raman/ROA data were in good agreement with the secondary structures calculated from ECD. The results obtained in this work demonstrate that the chiroptical methods used here can be applied to analyze not only pure protein solutions but also more complex systems, such as biological fluids.

Analysis of human blood plasma and hen egg white by ECD, VCD and ROA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–d
Fig. 4a–d

Similar content being viewed by others

References

  1. Skrabana R, Skrabanova-Khuebachova M, Kontsek P, Novak M (2006) Anal Biochem 359:230–237

    Article  CAS  Google Scholar 

  2. Leal SS, Botelho HM, Gomes CM (2012) Coord Chem Rev 256:2253–2270

    Article  CAS  Google Scholar 

  3. Glabe CG (2004) Trends Biochem Sci 29:542–547

    Article  CAS  Google Scholar 

  4. Buxbaum JN (2003) Trends Biochem Sci 28:585–592

    Article  CAS  Google Scholar 

  5. Huang Z, McWilliams A, Lui H, McLean DI, Lam S, Zeng H (2003) Int J Cancer 107:1047–1052

    Article  CAS  Google Scholar 

  6. Teh SK, Zheng W, Ho KY, Teh M, Yeoh KG, Huang Z (2010) Int J Cancer 126:1920–1927

    CAS  Google Scholar 

  7. Poon KWC, Lyng FM, Knief P, Howe O, Meade AD, Curtin JF, Byrne HJ, Vaughan J (2012) Analyst 137:1807–1814

    Article  CAS  Google Scholar 

  8. Reyes-Goddard JM, Barr H, Stone N (2005) Photodiagnosis Photodyn Ther 2:223–233

    Article  Google Scholar 

  9. Caspers PJ, Lucassen GW, Puppels GJ (2003) Biophys J 85:572–580

    Article  CAS  Google Scholar 

  10. Synytsya A, Kral V, Pouckova P, Volka K (2001) Appl Spectrosc 55:142–148

    Article  CAS  Google Scholar 

  11. Ahmed SSSJ, Santosh W, Kumar S, Christlet HT (2010) Vib Spectrosc 53:181–188

    Article  CAS  Google Scholar 

  12. Blanch EW, McColl IH, Hecht L, Nielsen K, Barron LD (2004) Vib Spectrosc 35:87–92

    Article  CAS  Google Scholar 

  13. Zhu F, Isaacs NW, Hecht L, Barron LD (2005) Structure 13:1409–1419

    Article  CAS  Google Scholar 

  14. Ashton L, Czarnik-Matusewicz B, Blanch EW (2006) J Mol Struct 799:61–71

    Article  CAS  Google Scholar 

  15. Barron LD, Hecht L, Blanch EW, Bell AF (2000) Prog Biophys Mol Biol 73:1–49

    Article  CAS  Google Scholar 

  16. Zhu F, Kapitan J, Tranter GE, Pudney PDA, Isaacs NW, Hecht L, Barron LD (2008) Proteins 70:823–833

    Article  CAS  Google Scholar 

  17. Pelton JT, McLean LR (2000) Anal Biochem 277:167–176

    Article  CAS  Google Scholar 

  18. Nehira T, Ishihara K, Matsuo K, Izumi S, Yamazaki T, Ishida A (2012) Anal Biochem 430:179–184

    Article  CAS  Google Scholar 

  19. Herrero AM (2008) Crit Rev Food Sci Nutr 48:512–523

    Article  CAS  Google Scholar 

  20. Ozaky Y, Cho R, Ikegaya K, Muraishi S, Kawauchi K (1992) Appl Spectrosc 46:1503–1507

    Article  Google Scholar 

  21. Yin WZ, Guo ZY, Zhuang ZF, Liu SH, Xiong K, Chen SJ (2012) Laser Physics 22:996–1001

    Article  CAS  Google Scholar 

  22. Feng S, Chen R, Lin J, Pan J, Wu Y, Li Y, Chen J, Zeng H (2011) Biosens Bioelectron 26:3167–3174

    Article  CAS  Google Scholar 

  23. Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, Xie S, Zeng H, Chen R (2011) Opt Express 19:13565–13577

    Article  CAS  Google Scholar 

  24. Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, Cheng M, Huang Z, Chen J, Zeng H (2010) Biosens Bioelectron 25:2414–2419

    Article  CAS  Google Scholar 

  25. Saade J, Pacheco MTT, Rodrigues MR, Silveira L (2008) Spectrosc Int J 22:387–395

    Article  CAS  Google Scholar 

  26. Lista S, Faltraco F, Prvulovic D, Hampel H (2013) Prog Neurobiol 101–102:1–17

    Article  Google Scholar 

  27. Foulds PG, Mitchell JD, Parker A, Turner R, Green G, Diggle P, Hasegawa M, Taylor M, Mann D, Allsop D (2011) FASEB J 25:4127–4137

    Article  CAS  Google Scholar 

  28. Pan T, Sethi J, Nelsen C, Rudolph A, Cervenakova L, Brown P, Orser CS (2007) Transfusion 47:1418–1425

    Article  CAS  Google Scholar 

  29. Xie Y, Xiao J, Kai G, Chen X (2012) Integr Biol (Camb) 4:502–507

    Article  CAS  Google Scholar 

  30. Todinova S, Krumova S, Kurtev P, Dimitrov V, Djongov L, Dudunkov Z, Taneva SG (2012) Biochim Biophys Acta 1820:1879–1885

    Article  CAS  Google Scholar 

  31. Aluise CD, Sowell RA, Butterfield DA (2008) Biochim Biophys Acta—Mol Basis Dis 1782:549–558

    Google Scholar 

  32. Guerin-Dubiard C, Pasco M, Hietanen A, Bosque AQ, Nau F, Croguennec T (2005) J Chromatogr A 1090:58–67

    Article  CAS  Google Scholar 

  33. Brindle E, Fujita M, Shofer J, O’Connor KA (2010) J Immunol Methods 362:112–120

    Article  CAS  Google Scholar 

  34. Soucy J, Blanc JL (1999) Nutr Res 19:17–24

    Article  CAS  Google Scholar 

  35. Rise P, Eligini S, Ghezzi S, Colli S, Galli C (2007) Fatty Acids 76:363–369

    Article  CAS  Google Scholar 

  36. Cha MK, Kim ICH (1996) Biochem Biophys Res Commun 222:619–625

    Article  CAS  Google Scholar 

  37. Hoyo PD, Moure F, Rendueles M, Diaz M (2007) Meat Sci 76:402–410

    Article  Google Scholar 

  38. Solheim BG, Wesenberg F (2001) Eur J Cancer 37:2421–2425

    Article  CAS  Google Scholar 

  39. Atherton JC (2006) Anaesth Intensive Care Med 7:216–220

    Article  Google Scholar 

  40. Doolan PD, Alpen EL, Theil GB (1962) Am J Med 32:65–79

    Article  CAS  Google Scholar 

  41. Vogler EA, Siedlecki CA (2009) Biomaterials 30:1857–1869

    Article  CAS  Google Scholar 

  42. Lokhov PG, Kharybin ON, Archakov AI (2012) Int J Mass Spectrom 309:200–205

    CAS  Google Scholar 

  43. Lawaetz AJ, Bro R, Kamstrup-Nielsen M, Christensen IJ, Jorgensen LN, Nielsen HJ (2012) Metabolomics 8:S111–S121

    Article  Google Scholar 

  44. Burns DH, Rosendahl S, Bandilla D, Maes OC, Chertkow HM, Schipper HM (2009) J Alzheimers Dis 17:391–397

    CAS  Google Scholar 

  45. Bergholt MS, Hassing S (2009) Analyst 134:2123–2127

    Article  CAS  Google Scholar 

  46. Chen X, Huang Z, Feng S, Chen J, Wang L, Lu P, Zeng H, Chen R (2012) Int J Nanomed 7:6115–6121

    Article  CAS  Google Scholar 

  47. Lin J, Chen R, Feng S, Pan J, Li Y, Chen G, Cheng M, Huang Z, Yu Y, Zeng H (2011) Nanomed—Nanotechnol Biol Med 7:655–663

    Google Scholar 

  48. Hasim A, Ali M, Mamtimin B, Ma J-Q, Li Q-Z, Abudula A (2012) Exp Ther Med 3:945–951

    CAS  Google Scholar 

  49. Lerche MH, Meier S, Jensen PR, Hustvedt S-O, Karlsson M, Duus JO, Ardenkjær-Larsen JH (2011) NMR Biomed 24:96–103

    Article  CAS  Google Scholar 

  50. Mann K, Mann M (2011) Proteome Sci 9:7

    Article  CAS  Google Scholar 

  51. Mine Y (1995) Trends Food Sci Technol 6:225–232

    Article  CAS  Google Scholar 

  52. Alleoni CC (2006) Sci Agric 63:291–298

    Article  CAS  Google Scholar 

  53. Painter PC, Koenig JL (1976) Biopolymers 15:2155–2166

    Article  CAS  Google Scholar 

  54. Tatarkovic M, Fisar Z, Raboch J, Jirak R, Setnicka V (2012) Chirality 24:951–955

    Google Scholar 

  55. Whitmore L, Wallace BA (2008) Biopolymers 89:392–400

    Article  CAS  Google Scholar 

  56. Baello BI, Pancoska P, Keiderling TA (2000) Anal Biochem 280:46–57

    Article  CAS  Google Scholar 

  57. Keiderling TA (1981) Appl Spectrosc Rev 17:189–226

    Article  CAS  Google Scholar 

  58. Pancoska P, Yasui SC, Keiderling TA (1991) Biochemistry 30:5089–5103

    Article  CAS  Google Scholar 

  59. Bour P, Keiderling TA (1993) J Am Chem Soc 115:9602–9607

    Article  CAS  Google Scholar 

  60. Shanmugam G, Polavarapu PL (2004) J Am Chem Soc 126:10292–10295

    Article  CAS  Google Scholar 

  61. Dong A, Meyer JD, Brown JL, Manning MC, Carpenter JF (2000) Arch Biochem Biophys 383:148–155

    Article  CAS  Google Scholar 

  62. Kubelka J, Keiderling TA (2001) J Am Chem Soc 23:12048–12058

    Article  Google Scholar 

  63. Keiderling TA, Pancoska P, Baumruk V, Urbanova M, Gupta VP, Dukor RK, Huo D (1994) Determination of secondary structures of proteins using vibrational circular dichroism. ACS Symp Ser 576:61–70

  64. Callaghan P, Martin NH (1963) Biochem J 87:225–232

    CAS  Google Scholar 

  65. Zhu F, Isaacs NW, Hecht L, Tranter GE, Barron LD (2006) Chirality 18:103–115

    Article  Google Scholar 

  66. Busch KW, Busch MA (2006) Chiral analysis, 1st edn. Elsevier, Amsterdam, pp 562–578

  67. Kint S, Tomimatsu Y (1979) Biopolymers 18:1073–1079

    Article  CAS  Google Scholar 

  68. Ianeselli L, Zhang F, Skoda MWA, Jacobs RMJ, Martin RA, Callow S, Prevost S, Schreiber F (2010) J Phys Chem B 114:3776–3783

    Article  CAS  Google Scholar 

  69. Zhu G, Zhu X, Fan Q, Wan X (2011) Spectrochim Acta A 78:1187–1195

    Article  Google Scholar 

  70. Fischer WB, Eysel HH (1992) Spectrochim Acta A 48:725–732

    Article  Google Scholar 

  71. Barth A (2000) Prog Biophys Mol Biol 74:141–173

    Article  CAS  Google Scholar 

  72. Fabian H, Anzenbacher P (1993) Vib Spectrosc 4:125–148

    Article  CAS  Google Scholar 

  73. Uversky VN, Longhi S (2010) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. Wiley, Hoboken, p 260

  74. Moon YU, Curtis RA, Anderson CO, Blanch HW, Prausnitz JM (2000) J Solut Chem 29:699–718

    Article  CAS  Google Scholar 

  75. Haurowitz F (1963) The chemistry and function of proteins, 2nd edn. Academic, New York, p 220

  76. Nakamura K, Era S, Ozaki Y, Sogami M, Hayashi T, Murakami M (1997) FEBS Lett 417:375–378

    Article  CAS  Google Scholar 

  77. Pazderkova M, Bednarova L, Dlouha H, Flegel M, Lebl M, Hlavacek J, Setnicka V, Urbanova M, Hynie S, Klenerova V, Baumruk V, Malon P (2012) Biopolymers 97:923–932

    Article  CAS  Google Scholar 

  78. Khachik F, Englert G, Beecher GR, Smith JC (1995) J Chromatogr B 670:219–233

    Article  CAS  Google Scholar 

  79. Parker SF, Tavender SM, Dixon NM, Herman H, Williams KPJ, Maddams WF (1999) Appl Spectrosc 53:86–91

    Article  CAS  Google Scholar 

  80. Feltl L, Pacakova V, Stulik K, Volka K (2005) Curr Anal Chem 1:93–102

    Article  Google Scholar 

  81. Greenfield NJ (1996) Anal Biochem 235:1–10

    Article  CAS  Google Scholar 

  82. Greenfield NJ (2006) Nat Protoc 1:2876–2890

    Article  CAS  Google Scholar 

  83. Griebenow K, Hsieh L, Klibanov AM, Langer R (1999) J Control Release 58:357–366

    Article  Google Scholar 

  84. Yubao G, Weirong C, Kang T, Sicong T, Shunmin W, Xiuling Z, Wei Z (2013) J Agric Food Chem 61:185–192

    Google Scholar 

  85. Roach CA, Simpson JV, JiJi RD (2012) Analyst (Cambridge, UK) 137:555-562

  86. Synytsya Al, Synytsya An, Alexa P, Wagner R, Davidkova M, Volka K (2011) J Raman Spectrosc 42:544–550

  87. Synytsya A, Alexa P, de Boer J, Loewe M, Moosburger M, Wurkner M, Volka K (2007) J Raman Spectrosc 38:1406–1415

    Google Scholar 

  88. Synytsya A, Alexa P, de Boer J, Loewe M, Moosburger M, Wurkner M, Volka K (2007) J Raman Spectrosc 38:1646–1655

    Article  CAS  Google Scholar 

  89. Pancoska P, Bitto E, Janota V, Keiderling TA (1994) Faraday Discuss 99:287–310

    Article  CAS  Google Scholar 

  90. Jalkanen KJ, Elstner M, Suhai S (2004) J Mol Struct (THEOCHEM) 675:61–77

    Google Scholar 

  91. Tabassum S, Al-Asbahy WM, Afzal M, Arjmand F (2012) J Photochem Photobiol B 114:132–139

    Article  CAS  Google Scholar 

  92. Gelamo EL, Tabak M (2000) Spectrochim Acta A 56:2255–2271

    Article  Google Scholar 

  93. Tajmir-Riahi HA (2007) Sci Iran 14:87–95

    Google Scholar 

  94. Zikan J, Novotny J, Trapane TL, Kshland ME, Urry DW, Bennet JC, Mestecky J (1985) Proc Natl Acad Sci USA 82:5905–5909

    Article  CAS  Google Scholar 

  95. Kato A, Takagi T (1988) J Agric Food Chem 36:1156–1159

    Article  CAS  Google Scholar 

  96. Keung WM, Azari P, Phillips JL (1982) J Biol Chem 257:1177–1183

    CAS  Google Scholar 

  97. Watanabe K, Matsuda T, Sato Y (1981) Biochim Biophys Acta 27:242–250

    Google Scholar 

  98. Knubovets T, Osterhout JJ, Connoly PJ, Klibanov AM (1999) Proc Natl Acad Sci USA 96:1262–1296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth, and Sports of the Czech Republic (project No. CEZ: MSM6046137307), the Ministry of Health of the Czech Republic (project No. NT13259), the Complex Oncological Program (project PRVOUK P27), the Czech Science Foundation (project No. P208/11/0105), and Specific University Research MSMT (project No. 21/2012–A1_FCHI_2012_003, A2_FCHI_2012_015, and A2_FCHI_2012_045). The Jasco J-815 spectropolarimemeter and the ChiralRAMAN-2XTM instrument (BioTools, Inc.) were obtained through the financial support of the Prague Operational Program for Competitiveness (project No. CZ.2.16/3.100/22197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Synytsya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Synytsya, A., Judexová, M., Hrubý, T. et al. Analysis of human blood plasma and hen egg white by chiroptical spectroscopic methods (ECD, VCD, ROA). Anal Bioanal Chem 405, 5441–5453 (2013). https://doi.org/10.1007/s00216-013-6946-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6946-6

Keywords

Navigation