Skip to main content
Log in

Nanoparticle-encapsulated vis- and NIR-emissive fluorophores with different fluorescence decay kinetics for lifetime multiplexing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bioanalytical, clinical, and security applications increasingly require simple, efficient, and versatile strategies to measure an ever increasing number of analytes or events in parallel in a broad variety of detection formats as well as in conjunction with chromatographic separation techniques or flow cytometry. An attractive alternative to common optical multiplexing and encoding methods utilizing spectral multiplexing/color encoding and intensity encoding is lifetime multiplexing, which relies on the discrimination between different fluorescent reporters based on their fluorescence decay kinetics. Here, we propose a platform of surface-functionalizable polymeric nanoparticles stained with fluorophores differing in their fluorescence lifetimes as a new multiplexing and encoding approach. Proof-of-concept measurements with different sets of lifetime-encoded polystyrene nanoparticles are presented, obtained via staining of preformed particles with visible (vis)- and near-infrared (NIR)-emissive organic dyes, which display very similar absorption and emission spectra to enable excitation and detection at the same wavelengths, yet sufficiently different fluorescence decay kinetics in suspension, thereby minimizing instrumentation costs. Data analysis was performed with a linear combination approach in the lifetime domain. Our results and first cell experiments with these reporter sets underline the suitability of our multiplexing strategy for the discrimination between and the quantification of different labels. This simple and versatile concept can be extended to all types of fluorophores, thereby expanding the accessible time scale, and can be used, e.g., for the design of labels and targeted probes for fluorescence assays and molecular imaging, cellular imaging studies, and barcoding applications, also in conjunction with spectral and intensity encoding.

Nanoparticle-based lifetime multiplexing in living cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nolan JP, Mandy F (2006) Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems. Cytometry Part A 69A(5):318–325

    Article  CAS  Google Scholar 

  2. Ugozzoli LA (2004) Multiplex assays with fluorescent microbead readout: a powerful tool for mutation detection. Clin Chem 50(11):1963–1965

    Article  CAS  Google Scholar 

  3. Shepard JRE (2006) Polychromatic microarrays: simultaneous multicolor array hybridization of eight samples. Anal Chem 78(8):3589–3597

    Article  Google Scholar 

  4. Evans M, Sewter C, Hill E (2003) An encoded particle array tool for multiplex bioassays. Assay Drug Dev Technol 1(1):199–207

    Article  CAS  Google Scholar 

  5. De Rosa SC, Brenchley JM, Roederer M (2003) Beyond six colors: a new era in flow cytometry. Nat Med 9(1):112–117

    Article  Google Scholar 

  6. Lieberwirth U, Arden-Jacob J, Drexhage KH, Herten DP, Muller R, Neumann M, Schulz A, Siebert S, Sagner G, Klingel S, Sauer M, Wolfrum J (1998) Multiplex dye DNA sequencing in capillary gel electrophoresis by diode laser-based time-resolved fluorescence detection. Anal Chem 70(22):4771–4779

    Article  CAS  Google Scholar 

  7. Grabolle M, Kapusta P, Nann T, Shu X, Ziegler J, Resch-Genger U (2009) Fluorescence lifetime multiplexing with nanocrystals and organic labels. Anal Chem 81(18):7807–7813

    Article  CAS  Google Scholar 

  8. Song EQ, Hu J, Wen CY, Tian ZQ, Yu X, Zhang ZL, Shi YB, Pang DW (2011) Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5(2):761–770

    Article  CAS  Google Scholar 

  9. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  10. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  Google Scholar 

  11. Hotzer B, Medintz IL, Hildebrandt N (2012) Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. Small 8(15):2297–2326

    Article  Google Scholar 

  12. Hemmila I, Laitala V (2005) Progress in lanthanides as luminescent probes. J Fluoresc 15(4):529–542

    Article  CAS  Google Scholar 

  13. Battersby BJ, Trau M (2007) Optically encoded particles and their applications in multiplexed biomedical assays. Aust J Chem 60(5):343–353

    Article  CAS  Google Scholar 

  14. Raymond SB, Boas DA, Bacskai BJ, Kumar ATN (2010) Lifetime-based tomographic multiplexing. J Biomed Opt 15(4):046011

    Article  Google Scholar 

  15. Ehlert O, Thomann R, Darbandi M, Nann T (2008) A four-color colloidal multiplexing nanoparticle system. ACS Nano 2(1):120–124

    Article  CAS  Google Scholar 

  16. Hoffmann K, Behnke T, Drescher D, Kneipp J, ReschGenger U (2011) Lifetime-based discrimination between spectrally matching vis and NIR emitting particle labels and probes. In: Proceedings of SPIE, 2011, single molecule spectroscopy and imaging IV

  17. Hoffmann K, Behnke T, Drescher D, Kneipp J, Resch-Genger U (2013) Near-infrared-emitting nanoparticles for lifetime-based multiplexed analysis and imaging of living cells. ACS Nano 7(8):6674–6684

    Article  CAS  Google Scholar 

  18. Behnke T, Würth C, Hoffmann K, Hubner M, Panne U, Resch-Genger U (2011) Encapsulation of hydrophobic dyes in polystyrene micro- and nanoparticles via swelling procedures. J Fluoresc 21(3):937–944

    Article  CAS  Google Scholar 

  19. Behnke T, Würth C, Laux EM, Hoffmann K, Resch-Genger U (2012) Simple strategies towards bright polymer particles via one-step staining procedures. Dyes Pigments 94(2):247–257

    Article  CAS  Google Scholar 

  20. Napp J, Behnke T, Fischer L, Wurth C, Wottawa M, Katschinski DM, Alves F, Resch-Genger U, Schaferling M (2011) Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 83(23):9039–9046

    Article  CAS  Google Scholar 

  21. Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20(12):2454–2469

    Article  CAS  Google Scholar 

  22. Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042

    Article  CAS  Google Scholar 

  23. Yan JL, Estevez MC, Smith JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2(3):44–50

    Article  Google Scholar 

  24. Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15(27–28):2657–2669

    Article  CAS  Google Scholar 

  25. Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123(126):471–485

    Article  Google Scholar 

  26. Miletto I, Gilardino A, Zamburlin P, Dalmazzo S, Lovisolo D, Caputo G, Viscardi G, Martra G (2010) Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging: photophysical characterization and cell tests. Dyes Pigments 84(1):121–127

    Article  CAS  Google Scholar 

  27. Behnke T, Mathejczyk JE, Brehm R, Würth C, Gomes FR, Dullin C, Napp J, Alves F, Resch-Genger U (2013) Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development. Biomaterials 34(1):160–170

    Article  CAS  Google Scholar 

  28. BASF Dispersions & Pigments North America (2013) http://www.dispersions-pigments.basf.us/p02/USWeb-Internet/pigments/en_GB/content/microsites/pigmentsdispersions/products/Lumogen. Accessed 6 Jan 2014

  29. Behnke T, Hoffmann A, Hoffmann K, Resch-Genger U (2010) DE Patent DE102008040513 Verwendung einer langwellig emittierenden Cyaninverbindung als NIR-Fluoreszenzstandard und Kit zur Kalibrierung von Photolumineszenzmesssystemen

  30. Patsenker LD, Tatarets AL, Povrozin YA, Terpetschnig EA (2011) Long-wavelength fluorescence lifetime labels. Bioanal Rev 3:115–137

    Article  Google Scholar 

  31. Laux EM, Behnke T, Hoffmann K, Resch-Genger U (2012) Keeping particles brilliant—simple methods for the determination of the dye content of fluorophore-loaded polymeric particles. Anal Methods 4(6):1759–1768

    Article  CAS  Google Scholar 

  32. Resch-Genger U, Pfeifer D, Monte C, Pilz W, Hoffmann A, Spieles M, Rurack K, Hollandt J, Taubert D, Schonenberger B, Nording P (2005) Traceability in fluorometry: part II. Spectral fluorescence standards. J Fluoresc 15(3):315–336

    Article  CAS  Google Scholar 

  33. Krämer B, Koberling F, Tannert A, Korte T, Hermann A (2005) Fluorescence lifetime imaging (FLIM) based analysis of lipid organization in hepatocytes using the MicroTime 200. PicoQuant, Berlin

    Google Scholar 

  34. PicoQuant (2008) Picoquant application note SymphoTime software; http://www.picoquant.de/technotes/appnote_spt_demo_workspace.pdf. Accessed 8 Oct 2013

  35. Berezin MY, Akers WJ, Guo K, Fischer GM, Daltrozzo E, Zumbusch A, Achilefu S (2009) Long fluorescence lifetime molecular probes based on near infrared pyrrolopyrrole cyanine fluorophores for in vivo imaging. Biophys J 97(9):L22–L24

    Article  CAS  Google Scholar 

  36. Nothdurft R, Sarder P, Bloch S, Culver J, Achilefu S (2012) Fluorescence lifetime imaging microscopy using near-infrared contrast agents. J Microsc 247(2):202–207

    Article  CAS  Google Scholar 

  37. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684

    Article  CAS  Google Scholar 

  38. Abbasi AZ, Amin F, Niebling T, Friede S, Ochs M, Carregal-Romero S, Montenegro JM, Gil PR, Heimbrodt W, Parak WJ (2011) How colloidal nanoparticles could facilitate multiplexed measurements of different analytes with analyte-sensitive organic fluorophores. ACS Nano 5(1):21–25

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Federal Ministry of Economics and Technology (BMWI-22/06 and BMWI-13/09). We would like to thank D. Drescher and J. Kneipp (BAM 1.0) for designing and performing the cell culture experiments. We also express our gratitude to Picoquant GmbH for support with the FLIM setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Resch-Genger.

Additional information

Published in the topical collection Multiplex Platforms in Diagnostics and Bioanalytics with guest editors Günter Peine and Günther Proll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, K., Behnke, T., Grabolle, M. et al. Nanoparticle-encapsulated vis- and NIR-emissive fluorophores with different fluorescence decay kinetics for lifetime multiplexing. Anal Bioanal Chem 406, 3315–3322 (2014). https://doi.org/10.1007/s00216-013-7597-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7597-3

Keywords

Navigation