Skip to main content
Log in

Determination of neurotransmitters and their metabolites using one- and two-dimensional liquid chromatography with acidic potassium permanganate chemiluminescence detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

High-performance liquid chromatography with chemiluminescence detection based on the reaction with acidic potassium permanganate and formaldehyde was explored for the determination of neurotransmitters and their metabolites. The neurotransmitters norepinephrine and dopamine were quantified in the left and right hemispheres of rat hippocampus, nucleus accumbens and prefrontal cortex, and the metabolites vanillylmandelic acid, 3,4-dihydrophenylacetic acid, 5-hydroxyindole-3-acetic acid and homovanillic acid were identified in human urine. Under optimised chemiluminescence reagent conditions, the limits of detection for these analytes ranged from 2.5 × 10−8 to 2.5 × 10−7 M. For the determination of neurotransmitter metabolites in urine, a two-dimensional high-performance liquid chromatography (2D-HPLC) separation operated in heart-cutting mode was developed to overcome the peak capacity limitations of the one-dimensional separation. This approach provided the greater separation power of 2D-HPLC with analysis times comparable to conventional one-dimensional separations.

2D-HPLC separation and permanganate chemiluminescence detection of neurotransmitter metabolites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosano TG, Whitley RJ (2006) Catecholamines and serotonin. In: Burtis CA, Ashwood ER, Bruns DE (eds) Tietz textbook of clinical chemistry and molecular diagnostics, 4th edn. Elsevier, St. Louis, pp 1033–1074

    Google Scholar 

  2. Heales SJR (2008) Biogenic amines. In: Blau N, Duran M, Gibson KM (eds) Laboratory guide to the methods in biochemical genetics. Springer, Heidelberg, pp 703–715

    Chapter  Google Scholar 

  3. Nguyen AT, Aerts T, Van Dam D, De Deyn PP (2010) Biogenic amines and their metabolites in mouse brain tissue: development, optimization and validation of an analytical HPLC method. J Chromatogr B 878(29):3003–3014

    Article  CAS  Google Scholar 

  4. Huang T, Kissinger PT (1996) Liquid chromatographic determination of serotonin in homogenized dog intestine and rat brain tissue using a 2 mm i.d. PEEK column. Curr Sep 14(3/4):114–119

    CAS  Google Scholar 

  5. Hyland K (2003) The lumbar puncture for diagnosis of pediatric neurotransmitter diseases. Ann Neurol 54(S6):S13–S17

    Article  CAS  Google Scholar 

  6. Umegaki H, Tamaya N, Shinkai T, Iguchi A (2000) The metabolism of plasma glucose and catecholamines in Alzheimer’s disease. Exp Gerontol 35(9–10):1373–1382

    Article  CAS  Google Scholar 

  7. Tajima T, Endo H, Suzuki Y, Ikari H, Gotoh M, Iguchi A (1996) Immobilization stress-induced increase of hippocampal acetylcholine and of plasma epinephrine, norepinephrine and glucose in rats. Brain Res 720(1–2):155–158

    Article  CAS  Google Scholar 

  8. Vogel WH, Miller J, DeTurck KH, Routzahn BK Jr (1984) Effects of psychoactive drugs on plasma catecholamines during stress in rats. Neuropharmacology 23(9):1105–1108

    Article  CAS  Google Scholar 

  9. Liu G, Chen J, Ma Y (2004) Simultaneous determination of catecholamines and polyamines in PC-12 cell extracts by micellar electrokinetic capillary chromatography with ultraviolet absorbance detection. J Chromatogr B 805(2):281–288

    Article  CAS  Google Scholar 

  10. Qu Y, Moons L, Vandesande F (1997) Determination of serotonin, catecholamines and their metabolites by direct injection of supernatants from chicken brain tissue homogenate using liquid chromatography with electrochemical detection. J Chromatogr B 704(1–2):351–358

    Article  CAS  Google Scholar 

  11. Musshoff F, Schmidt P, Dettmeyer R, Priemer F, Jachau K, Madea B (2000) Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Sci Int 113(1):359–366

    Article  CAS  Google Scholar 

  12. Ahmad A, Rasheed N, Ashraf GM, Kumar R, Banu N, Khan F, Al-Sheeha M, Palit G (2012) Brain region specific monoamine and oxidative changes during restraint stress. Can J Neurol Sci 39(3):311–318

    Google Scholar 

  13. Parrot S, Neuzeret PC, Denoroy L (2011) A rapid and sensitive method for the analysis of brain monoamine neurotransmitters using ultra-fast liquid chromatography coupled to electrochemical detection. J Chromatogr B 879(32):3871–3878

    Article  CAS  Google Scholar 

  14. Soblosky JS, Colgin LL, Parrish CM, Davidson JF, Carey ME (1998) Procedure for the sample preparation and handling for the determination of amino acids, monoamines and metabolites from microdissected brain regions of the rat. J Chromatogr B 712(1–2):31–41

    Article  CAS  Google Scholar 

  15. Tanaka M, Yasuko K, Ryoichi N, Yoshishige I, Shigeko T, Nobuyuki N (1982) Time-related differences in noradrenaline turnover in rat brain regions by stress. Pharmacol Biochem Behav 16(2):315–319

    Article  CAS  Google Scholar 

  16. Viña J, Romero FJ, Saez GT, Pallardó FV (1983) Effects of cysteine and N-acetyl cysteine on GSH content of brain of adult rats. Cell Mol Life Sci 39(2):164–165

    Article  Google Scholar 

  17. Narasimhachari N, Leiner K, Brown C (1975) The simultaneous determination by selected ion monitoring of the levels of homovanillic, isohomovanillic, 3,4-dihydroxyphenylacetic and 3-methoxy-4-hydroxymandelic acids in single biological samples. Clin Chim Acta 62(2):245–253

    Article  CAS  Google Scholar 

  18. Ater JL, Gardner KL, Foxhall LE, Therrell BL, Bleyer WA (1998) Neuroblastoma screening in the United States. Cancer 82(8):1593–1602

    Article  CAS  Google Scholar 

  19. Chan ECY, Ho PC (2000) High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometric method for the analysis of catecholamines and metanephrines in human urine. Rapid Commun Mass Spec 14(21):1959–1964

    Article  CAS  Google Scholar 

  20. Hollenbach E, Schulz C, Lehnert H (1998) Rapid and sensitive determination of catecholamines and the metabolite 3-methoxy-4-hydroxyphen-ethyleneglycol using HPLC following novel extraction procedures. Life Sci 63(9):737–750

    Article  CAS  Google Scholar 

  21. Odink J, Korthals H, Knijff JH (1988) Simultaneous determination of the major acidic metabolites of catecholamines and serotonin in urine by liquid chromatography with electrochemical detection after a one-step sample clean-up on Sephadex G-10; influence of vanilla and banana ingestion. J Chromatogr B 424:273–283

    Article  CAS  Google Scholar 

  22. Feldman JM, Lee EM (1985) Serotonin content of foods: effect on urinary excretion of 5-hydroxyindoleacetic acid. Am J Clin Nutr 42(4):639–643

    CAS  Google Scholar 

  23. Lynn-Bullock CP, Welshhans K, Pallas SL, Katz PS (2004) The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats. J Chem Neuroanat 27(2):129–138

    Article  CAS  Google Scholar 

  24. Duncan MW, Compton P, Lazarus L, Smythe GA (1988) Measurement of norepinephrine and 3,4-dihydroxyphenylglycol in urine and plasma for the diagnosis of pheochromocytoma. New Eng J Med 319(3):136–142

    Article  CAS  Google Scholar 

  25. Barthelemy C, Bruneau N, Cottet-Eymard JM, Domenech-Jouve J, Garreau B, Lelord G, Muh JP, Peyrin L (1988) Urinary free and conjugated catecholamines and metabolites in autistic children. J Autism Dev Disord 18(4):583–591

    Article  CAS  Google Scholar 

  26. Stevenson PG, Mnatsakanyan M, Guiochon G, Shalliker RA (2010) Peak picking and the assessment of separation performance in two-dimensional high performance liquid chromatography. Analyst 135(7):1541–1550

    Article  CAS  Google Scholar 

  27. Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L (2008) Comprehensive multidimensional liquid chromatography: theory and applications. J Chromatogr A 1184(1–2):353–368

    Article  CAS  Google Scholar 

  28. Guiochon G, Marchetti N, Mriziq K, Shalliker RA (2008) Implementations of two-dimensional liquid chromatography. J Chromatogr A 1189(1–2):109–168

    Article  CAS  Google Scholar 

  29. Eggink M, Romero W, Vreuls RJ, Lingeman H, Niessen WMA, Irth H (2008) Development and optimization of a system for comprehensive two-dimensional liquid chromatography with UV and mass spectrometric detection for the separation of complex samples by multi-step gradient elution. J Chromatogr A 1188(2):216–226

    Article  CAS  Google Scholar 

  30. Zeng L, Xu R, Zhang Y, Kassel DB (2011) Two-dimensional supercritical fluid chromatography/mass spectrometry for the enantiomeric analysis and purification of pharmaceutical samples. J Chromatogr A 1218(20):3080–3088

    Article  CAS  Google Scholar 

  31. Raust J-A, Brüll A, Moire C, Farcet C, Pasch H (2008) Two-dimensional chromatography of complex polymers: 6. Method development for (meth)acrylate-based copolymers. J Chromatogr A 1203(2):207–216

    Article  CAS  Google Scholar 

  32. Issaq HJ, Chan KC, Janini GM, Conrads TP, Veenstra TD (2005) Multidimensional separation of peptides for effective proteomic analysis. J Chromatogr B 817(1):35–47

    Article  CAS  Google Scholar 

  33. Janssen H-G, Steenbergen H, de Koning S (2009) The role of comprehensive chromatography in the characterization of edible oils and fats. Eur J Lipid Sci Tech 111(12):1171–1184

    Article  CAS  Google Scholar 

  34. Anderson GM, Schlicht KR, Cohen DJ (1985) Two-dimensional high-performance liquid chromatographic determination of 5-hydroxyindoleacetic acid and homovanillic acid in urine. Anal Biochem 144(1):27–31

    Article  CAS  Google Scholar 

  35. Anderson GM, Schlicht KR, Cohen DJ (1983) Two-dimensional liquid chromatographic determination of (3-methoxy-4-hydroxyphenyl)glycol in urine. Anal Chem 55(8):1399–1402

    Article  CAS  Google Scholar 

  36. Tsunoda M (2006) Recent advances in methods for the analysis of catecholamines and their metabolites. Anal Bioanal Chem 386(3):506–514

    Article  CAS  Google Scholar 

  37. Garnier P, Grosclaude J-M, Goudey-Perrière F, Gervat V, Gayral P, Jacquot C, Perrière C (1996) Presence of norepinephrine and other biogenic amines in stonefish venom. J Chromatogr B 685(2):364–369

    Article  CAS  Google Scholar 

  38. Cheng F-C, Kuo J-S (1995) High-performance liquid chromatographic analysis with electrochemical detection of biogenic amines using microbore columns. J Chromatogr B 665(1):1–13

    Article  CAS  Google Scholar 

  39. Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ (2004) High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J Neurosci Meth 138(1–2):123–132

    Article  CAS  Google Scholar 

  40. Bicker J, Fortuna A, Alves G, Falcão A (2013) Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples—a review. Anal Chim Acta 768(1):12–34

    Article  CAS  Google Scholar 

  41. Hindson BJ, Barnett NW (2001) Analytical applications of acidic potassium permanganate as a chemiluminescence reagent. Anal Chim Acta 445(1):1–19

    Article  CAS  Google Scholar 

  42. Deftereos NT, Calokerinos AC, Efstathiou CE (1993) Flow injection chemiluminometric determination of epinephrine, norepinephrine, dopamine and L-dopa. Analyst 118(6):627–632

    Article  CAS  Google Scholar 

  43. Ikkai H, Nakagama T, Yamada M, Hobo T (1989) Flow chemiluminescent determination of catecholamines based on permanganate oxidation. Bull Chem Soc Jap 62(5):1660–1662

    Article  CAS  Google Scholar 

  44. Slezak T, Smith ZM, Adcock JL, Hindson CM, Barnett NW, Nesterenko PN, Francis PS (2011) Kinetics and selectivity of permanganate chemiluminescence: a study of hydroxyl and amino disubstituted benzene positional isomers. Anal Chim Acta 707(1–2):121–127

    Article  CAS  Google Scholar 

  45. Adcock JL, Francis PS, Barnett NW (2007) Acidic potassium permanganate as a chemiluminescence reagent—a review. Anal Chim Acta 601(1):36–67

    Article  CAS  Google Scholar 

  46. Adcock JL, Barnett NW, Costin JW, Francis PS, Lewis SW (2005) Determination of selected neurotransmitter metabolites using monolithic column chromatography coupled with chemiluminescence detection. Talanta 67(3):585–589

    Article  CAS  Google Scholar 

  47. McDermott GP, Francis PS, Holt KJ, Scott KL, Martin SD, Stupka N, Barnett NW, Conlan XA (2011) Determination of intracellular glutathione and glutathione disulfide using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Analyst 136(12):2578–2585

    Article  CAS  Google Scholar 

  48. Eilers PHC (2003) A perfect smoother. Anal Chem 75(14):3631–3636

    Article  CAS  Google Scholar 

  49. Francis PS, Hindson CM, Terry JM, Smith ZM, Slezak T, Adcock JL, Fox BL, Barnett NW (2011) Enhanced permanganate chemiluminescence. Analyst 136(1):64–66

    Article  CAS  Google Scholar 

  50. Inoue T, Tsuchiya K, Koyama T (1994) Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol Biochem Behav 49(4):911–920

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xavier A. Conlan or Paul S. Francis.

Additional information

Published in the topical collection Analytical Bioluminescence and Chemiluminescence with guest editors Elisa Michelini and Mara Mirasoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, B.J., Conlan, X.A., Stevenson, P.G. et al. Determination of neurotransmitters and their metabolites using one- and two-dimensional liquid chromatography with acidic potassium permanganate chemiluminescence detection. Anal Bioanal Chem 406, 5669–5676 (2014). https://doi.org/10.1007/s00216-013-7514-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7514-9

Keywords

Navigation