Skip to main content
Log in

A new restricted access molecularly imprinted polymer capped with albumin for direct extraction of drugs from biological matrices: the case of chlorpromazine in human plasma

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new restricted access molecularly imprinted polymer coated with bovine serum albumin (RAMIP-BSA) was developed, characterized, and used for direct analysis of chlorpromazine in human plasma samples. The RAMIP-BSA was synthesized using chlorpromazine, methacrylic acid, and ethylene glycol dimethacrylate as template, functional monomer, and cross-linker, respectively. Glycerol dimethacrylate and hydroxy methyl methacrylate were used to promote a hydrophilic surface (high density of hydroxyl groups). Afterward, the polymer was coated with BSA using glutaraldehyde as cross-linker, resulting in a protein chemical shield around it. The material was able to eliminate ca. 99 % of protein when a 44-mg mL−1 BSA aqueous solution was passed through it. The RAMIP-BSA was packed in a column and used for direct analysis of chlorpromazine in human plasma samples in an online column switching high-performance liquid chromatography system. The analytical calibration curve was prepared in a pool of human plasma samples with chlorpromazine concentrations ranging from 30 to 350 μg L−1. The correlation coefficient obtained was 0.995 and the limit of quantification was 30 μg L−1. Intra-day and inter-day precision and accuracy presented variation coefficients and relative errors lower than 15 % and within −15 and 15 %, respectively. The sample throughput was 3 h−1 (sample preparation and chromatographic analysis steps) and the same RAMIP-BSA column was efficiently used for about 90 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dias ACB, Figueiredo EC, Grassi V, Zagatto EAG, Arruda MAZ (2009) Talanta 76:988–996

    Article  Google Scholar 

  2. Figueiredo EC, Sanvido GB, Arruda MAZ, Eberlin MN (2012) Analyst 135:726–730

    Article  Google Scholar 

  3. Magalhães CS, Garcia JS, Lopes AS, Figueiredo EC, Arruda MAZ (2007) In: Arruda MAZ (ed) Trends in sample preparation. Nova Science, New York

    Google Scholar 

  4. Figueiredo EC, de Oliveira DM, de Siqueira MEPB, Arruda MAZ (2009) Anal Chim Acta 635:102–107

    Article  CAS  Google Scholar 

  5. Vieira AC, Zampieri RA, de Siqueira MEPB, Martins I, Figueiredo EC (2012) Analyst 137:2462–2469

    Article  CAS  Google Scholar 

  6. Vitor RV, Martins MCG, Figueiredo ECF, Martins I (2011) Anal Bioanal Chem 400:2109–2117

    Article  CAS  Google Scholar 

  7. Figueiredo EC, Sparrapan R, Sanvido GB, Santos MG, Arruda MAZ, Eberlin MN (2011) Analyst 136:3753–3757

    Article  CAS  Google Scholar 

  8. Franqui LS, Vieira AC, Maia PP, Figueiredo EC (2012) Quim Nova 35:1577–1581

    Article  CAS  Google Scholar 

  9. Golsefidi MA, Es'haghi Z, Sarafraz-Yazdi A (2012) J Chromatogr A 1229:24–29

    Article  CAS  Google Scholar 

  10. Feng JJ, Sun M, Li JB, Liu X, Jiang SX (2012) J Chromatogr A 1227:54–59

    Article  CAS  Google Scholar 

  11. Lee TP, Saad B, Khayoon WS, Salleh B (2012) Talanta 88:129–135

    Article  CAS  Google Scholar 

  12. Wang S, Wei J, Hao TT, Guo ZT (2012) J Electroanal Chem 664:146–151

    Article  CAS  Google Scholar 

  13. Hu YL, Li JW, Hu YF, Li GK (2010) Talanta 82:464–470

    Article  CAS  Google Scholar 

  14. Prieto A, Vallejo A, Zuloaga O, Paschke A, Sellergen B, Schillinger E, Schrader S, Moder M (2011) Anal Chim Acta 703:41–51

    Article  CAS  Google Scholar 

  15. Prieto A, Schrader S, Bauer C, Moder M (2011) Anal Chim Acta 685:146–152

    Article  CAS  Google Scholar 

  16. Zhang ZM, Tan W, Hu YL, Li GK, Zan S (2012) Analyst 137:968–977

    Article  CAS  Google Scholar 

  17. Souverain S, Rudaz S, Veuthey J (2004) J Chromatogr B 801:141–156

    Article  CAS  Google Scholar 

  18. Haginaka J, Sanbe H (2000) Anal Chem 72:5206–5210

    Article  CAS  Google Scholar 

  19. Haginaka J, Takehira H, Hosaya K, Tanaka N (1999) J Chromatogr A 849:331–339

    Article  CAS  Google Scholar 

  20. Sanbe H, Haginaka J (2003) Analyst 128:593–597

    Article  CAS  Google Scholar 

  21. Puoci F, Iemma F, Cirillo G, Curcio M, Oarisi OI, Spizzirri UG, Picci N (2009) Eur Polym J 45:1634–1640

    Article  CAS  Google Scholar 

  22. Parisi OI, Cirillo G, Curcio M, Puoci F, Iemma F, Spizzirri UG, Picci N (2010) J Polym Res 17:355–362

    Article  CAS  Google Scholar 

  23. Hua K, Zhang L, Zhang Z, Guo Y, Guo T (2011) Acta Biomater 7:3086–3096

    Article  CAS  Google Scholar 

  24. dos Santos-Neto AJ, Fernandes C, Rodrigues JC, Alves C, Lanças FM (2008) J Sep Sci 31:78–85

    Article  CAS  Google Scholar 

  25. Barreiro JC, Vanzolini KL, Cass QB (2011) J Chromatogr A 1218:2865–2870

    Article  CAS  Google Scholar 

  26. Santos Neto AJ, Rodrigues JC, Fernandes C, Titato GM, Alves C, Lanças FM (2006) J Chromatogr A 1105:71–76

    Article  CAS  Google Scholar 

  27. Cassiano NM, Lima VV, Oliveira RV, Pietro AC, Cass QB (2006) Anal Bioanal Chem 384:1462–1469

    Article  CAS  Google Scholar 

  28. Gomes RF, Cassiano NM, Pedrazzoli J, Cass QB (2010) Chirality 22:35–41

    Article  CAS  Google Scholar 

  29. Menezes ML, Felix G (1998) J Liq Chromatogr Relat Technol 21:2863–2871

    Article  CAS  Google Scholar 

  30. Love JN, Smith JA, Simmons R (2006) J Emerg Med 31:53–59

    Article  Google Scholar 

  31. Radhika M, Palanivelu K (2006) J Hazard Mater 138:116–124

    Article  CAS  Google Scholar 

  32. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic, London

    Google Scholar 

  33. Sobhi HR, Yamini Y, Abadi RHHB (2007) J Pharm Biomed Anal 45:769–774

    Article  CAS  Google Scholar 

  34. Shabir GA (2003) J Chromatogr A 987:57–66

    Article  CAS  Google Scholar 

  35. Kirchherr H, Kühn-Velten WN (2006) J Chromatogr B 843:100–113

    Article  CAS  Google Scholar 

  36. United States Food and Drug Administration (US FDA) (2001) Guidance for industry. Bioanalytical method validation. FDA Center for Drug Evaluation and Research, Rockville

    Google Scholar 

  37. Hoshina K, Horiyama S, Matsunaga H, Haginaka J (2011) J Pharm Biomed Anal 55:916–922

    Article  CAS  Google Scholar 

  38. Xu W, Su S, Jiang P, Wang H, Dong X, Zhang M (2010) J Chromatogr A 1217:7198–7207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the “Fundação de Amparo à Pesquisa do Estado de Minas Gerais” (Belo Horizonte, Brazil; projects CDS-APQ-01612-10 and CDS-APQ-01323-09), “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (Brasília, Brazil), and “Fundação de Amparo à Pesquisa do Estado de São Paulo” (São Paulo, Brazil; process 2007/50970-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Costa Figueiredo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira Isac Moraes, G., da Silva, L.M.R., dos Santos-Neto, Á.J. et al. A new restricted access molecularly imprinted polymer capped with albumin for direct extraction of drugs from biological matrices: the case of chlorpromazine in human plasma. Anal Bioanal Chem 405, 7687–7696 (2013). https://doi.org/10.1007/s00216-013-7275-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7275-5

Keywords

Navigation