Skip to main content

Advertisement

Log in

Hyperspectral unmixing of Raman micro-images for assessment of morphological and chemical parameters in non-dried brain tumor specimens

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Hyperspectral unmixing is an unsupervised algorithm to calculate a bilinear model of spectral endmembers and abundances of components from Raman images. Thirty-nine Raman images were collected from six glioma brain tumor specimens. The tumor grades ranged from astrocytoma WHO II to glioblastoma multiforme WHO IV. The abundance plots of the cell nuclei were processed by an image segmentation procedure to determine the average nuclei size, the number of nuclei, and the fraction of nuclei area. The latter two morphological parameters correlated with the malignancy. A combination of spectral unmixing and non-negativity constrained linear least squares fitting is introduced to assess chemical parameters. First, endmembers of the most abundant and most dissimilar components were defined that represent all data sets. Second, the content of the obtained components’ proteins, nucleic acids, lipids, and lipid to protein ratios were determined in all Raman images. Except for the protein content, all chemical parameters correlated with the malignancy. We conclude that the morphological and chemical information offer new ways to develop Raman-based classification approaches that can complement diagnosis of brain tumors. The role of non-linear Raman modalities to speed-up image acquisition is discussed.

Raman images provide morphological details about cell nuclei that are automatically processed by image segmentation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Campanella R (1992) Membrane lipids modifications in human gliomas of different degree of malignancy. J Neurosurg Sci 36:11–25

    CAS  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  Google Scholar 

  3. Krafft C, Kirsch M, Beleites C, Schackert G, Salzer R (2007) Methodology for fiber-optic Raman mapping and FT-IR imaging of metastases in mouse brains. Anal Bioanal Chem 389:1133–1142

    Article  CAS  Google Scholar 

  4. Kirsch M, Schackert G, Salzer R, Krafft C (2010) Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal Bioanal Chem 398:1707–1713

    Article  CAS  Google Scholar 

  5. Koljenovic S, Bakker Schut TC, Vincent A, Kros JM, Puppels GJ (2005) Detection of meningeoma in dura mater by Raman spectroscopy. Anal Chem 77:7958–7965

    Article  CAS  Google Scholar 

  6. Koljenovic S, Choo-Smith LP, Bakker Schut TC, Kros JM, van den Bergh H, Puppels GJ (2002) Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy. Lab Invest 82:1265–1277

    Article  CAS  Google Scholar 

  7. Krafft C, Sobottka SB, Schackert G, Salzer R (2005) Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 130:1070–1077

    Article  CAS  Google Scholar 

  8. Krafft C, Sobottka SB, Schackert G, Salzer R (2006) Raman and infrared spectroscopic mapping of human primary intracranial tumors: a comparative study. J Raman Spectrosc 37:367–375

    Article  CAS  Google Scholar 

  9. Amharref N, Beljebbar A, Dukic S, Venteo L, Schneider L, Pluot M, Manfait M (2007) Discriminating healthy from tumor and necrosis tissue in rat brain tissue samples by Raman spectral imaging. Biochim Biophys Acta 1768:2605–2615

    Article  CAS  Google Scholar 

  10. Bergner N, Bocklitz T, Romeike BFM, Reichart R, Kalff R, Krafft C, Popp J (2012) Identification of primary brain tumors of brain metastases by Raman imaging and support vector machines. Chemometr Intell Lab Syst 117:224–232

    Article  CAS  Google Scholar 

  11. Krafft C, Belay B, Bergner N, Romeike BF, Reichart R, Kalff R, Popp J (2012) Advances in optical biopsy–correlation of malignancy and cell density of primary brain tumors using Raman microspectroscopic imaging. Analyst 137:5533–5537

    Article  CAS  Google Scholar 

  12. Bergner N, Krafft C, Geiger KD, Kirsch M, Schackert G, Popp J (2012) Unsupervised unmixing of Raman microspectroscopic images for morphological analysis of non-dried brain tumor specimens. Anal Bioanal Chem 403:719–725

    Article  CAS  Google Scholar 

  13. Medyukhina A, Meyer T, Schmitt M, Romeike BF, Dietzek B, Popp J (2012) Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy. J Biophotonics 5:878–888

    Article  Google Scholar 

  14. Hedegaard M, Matthäus C, Hassing S, Krafft C, Diem M, Popp J (2011) Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor Chem Accounts 130:1249–1260

    Article  CAS  Google Scholar 

  15. Martens H, Nielsen JP, Engelsen SB (2003) Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal Chem 75:394–404

    Article  CAS  Google Scholar 

  16. Lawson CL, Hanson RJ (1995) Solving least squares problems, SIAM

  17. Meyer T, Bergner N, Medyukhina A, Dietzek B, Krafft C, Romeike BF, Reichart R, Kalff R, Popp J (2012) Interpreting CARS images of tissue within the C–H-stretching region. J Biophotonics 5:729–733

    Article  CAS  Google Scholar 

  18. Almond LM, Hutchings J, Shepherd N, Barr H, Stone N, Kendall C (2011) Raman spectroscopy: a potential tool for early objective diagnosis of neoplasia in the oesophagus. J Biophotonics 4:685–695

    Article  Google Scholar 

  19. Bergholt MS, Zheng W, Ho KY, Teh M, Yeoh KG, So JB, Shabbir A, Huang Z (2013) Fiber-optic Raman spectroscopy probes gastric carcinogenesis in vivo at endoscopy. J Biophotonics 6:49–59

    Article  CAS  Google Scholar 

  20. Rowlands CJ, Varma S, Perkins W, Leach I, Williams H, Notingher I (2012) Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging. J Biophotonics 5:220–229

    Article  CAS  Google Scholar 

  21. Evans CL, Xu X, Kesari S, Xie XS, Wong STC, Young GS (2007) Chemically-selective imaging of brain structures with CARS microscopy. Opt Express 15:12076–12087

    Article  CAS  Google Scholar 

  22. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:1857–1861

    Article  CAS  Google Scholar 

  23. Meyer T, Bergner N, Bielecki C, Krafft C, Akimov D, Romeike BF, Reichart R, Kalff R, Dietzek B, Popp J (2011) Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis. J Biomed Opt 16:021113

    Article  Google Scholar 

  24. Baumgartl M, Gottschall T, Abreu-Afonso J, Diez A, Meyer T, Dietzek B, Rothhardt M, Popp J, Limpert J, Tunnermann A (2012) Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing. Opt Express 20:21010–21018

    Article  CAS  Google Scholar 

  25. Baumgartl M, Chemnitz M, Jauregui C, Meyer T, Dietzek B, Popp J, Limpert J, Tunnermann A (2012) All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion. Opt Express 20:4484–4493

    Article  CAS  Google Scholar 

  26. Chemnitz M, Baumgartl M, Meyer T, Jauregui C, Dietzek B, Popp J, Limpert J, Tunnermann A (2012) Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy. Opt Express 20:26583–26595

    Article  CAS  Google Scholar 

  27. Balu M, Liu G, Chen Z, Tromberg BJ, Potma EO (2010) Fiber delivered probe for efficient CARS imaging of tissues. Opt Express 18:2380–2388

    Article  CAS  Google Scholar 

  28. Murugkar S, Smith B, Srivastava P, Moica A, Naji M, Brideau C, Stys PK, Anis H (2010) Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source. Opt Express 18:23796–23804

    Article  CAS  Google Scholar 

  29. Saar BG, Johnston RS, Freudiger CW, Xie XS, Seibel EJ (2011) Coherent Raman scanning fiber endoscopy. Opt Lett 36:2396–2398

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from European Union via the “Europäischer Fonds für Regionale Entwicklung” (EFRE) and the “Thüringer Ministerium für Bildung Wissenschaft und Kultur” (TMBWK) (JenZIG project: B714-07037) and the “Bundesministerium für Bildung und Forschung” (BMBF) (MediCARS, FKZ: 13 N10774) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Krafft.

Additional information

Published in the topical collection Morpho-Spectral Imaging with guest editors Cyril Petibois and Yeukuang Hwu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergner, N., Medyukhina, A., Geiger, K.D. et al. Hyperspectral unmixing of Raman micro-images for assessment of morphological and chemical parameters in non-dried brain tumor specimens. Anal Bioanal Chem 405, 8719–8728 (2013). https://doi.org/10.1007/s00216-013-7257-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7257-7

Keywords

Navigation