Skip to main content
Log in

Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A detailed comparison of six multivariate algorithms is presented to analyze and generate Raman microscopic images that consist of a large number of individual spectra. This includes the segmentation algorithms for hierarchical cluster analysis, fuzzy C-means cluster analysis, and k-means cluster analysis and the spectral unmixing techniques for principal component analysis and vertex component analysis (VCA). All algorithms are reviewed and compared. Furthermore, comparisons are made to the new approach N-FINDR. In contrast to the related VCA approach, the used implementation of N-FINDR searches for the original input spectrum from the non-dimension reduced input matrix and sets it as the endmember signature. The algorithms were applied to hyperspectral data from a Raman image of a single cell. This data set was acquired by collecting individual spectra in a raster pattern using a 0.5-μm step size via a commercial Raman microspectrometer. The results were also compared with a fluorescence staining of the cell including its mitochondrial distribution. The ability of each algorithm to extract chemical and spatial information of subcellular components in the cell is discussed together with advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krafft C, Dietzek B, Popp J (2009) Raman and CARS microspectroscopy of cells and tissues. Analyst 134:1046–1057

    Article  CAS  Google Scholar 

  2. Nan X, Potma E, Xie X (2006) Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy. Biophys J 91:728–735

    Article  CAS  Google Scholar 

  3. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:1857–1861

    Article  CAS  Google Scholar 

  4. Diem M (1993) Introduction to modern vibrational spectroscopy. Wiley, Hoboken

    Google Scholar 

  5. Krafft C, Steiner G, Beleites C, Salzer R (2009) Disease recognition by infrared and Raman spectroscopy. J Biophotonics 2:13–28

    Article  CAS  Google Scholar 

  6. Bocklitz T, Putsche M, Stüber C, Käs J, Niendorf A, Rösch P, Popp J (2009) A comprehensive study of classification methods for medical diagnosis. J Raman Spectrosc 40:1759–1765

    Article  CAS  Google Scholar 

  7. Hedegaard M, Krafft C, Ditzel HJ, Johansen LE, Hassing S, Popp J (2009) Discriminating isogenic cancer cells and identifying altered unsaturated fatty acid content as associated with metastasis status, using k-means clustering and PLS-DA of Raman maps. Anal Chem 82:2797–2802

    Article  Google Scholar 

  8. Miljkovic M, Chernenko T, Romeo MJ, Bird B, Matthäus C, Diem M (2010) Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135:2002–2013

    Article  CAS  Google Scholar 

  9. Matthäus C, Chernenko T, Quintero L, Milane L, Kale A, Amiji M, Torchilin V, Diem M (2008) Raman microscopic imaging of cells and applications monitoring the uptake of drug delivery systems. Proc SPIE 6991, 699106. doi:10.1117/12.800385

  10. Chernenko T, Matthäus C, Milane L, Quintero L, Amiji M, Diem M (2009) Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems. ACS Nano 3:3552–3559

    Article  CAS  Google Scholar 

  11. Krafft C, Alipour Diderhoshan M, Recknagel P, Miljkovic M, Bauer M, Popp J (2011) Crisp and soft multivariate methods visualize individual cell nuclei in Raman images of liver tissue sections. Vib Spectrosc 55:90–100

    Article  CAS  Google Scholar 

  12. Nascimento JMP, Bioucas-Dias JM (2005) Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sens 43:898–910

    Article  Google Scholar 

  13. Keshava N (2003) A survey of spectral unmixing algorithms. Lincoln Lab J 14:55–73. www.ll.mit.edu/publications/journal/pdf/vol14_no1/14_1survey.pdf

    Google Scholar 

  14. Winter ME (1999) N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proc SPIE 3753:266–275. doi:10.1117/12.366289

    Article  Google Scholar 

  15. Berman M, Phatak A, Lagerstrom R, Wood BR (2009) ICE: a new method for the multivariate curve resolution of hyperspectral images. J Chemometrics 23:101–116

    Article  Google Scholar 

  16. Matthäus C, Chernenko T, Newmark JA, Warner CM, Diem M (2007) Label-Free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys J 93:668–673

    Article  Google Scholar 

  17. Ward JH (1963) Hierarchical grouping to optimize objective function. J Am Statistical Assoc 58:236–244

    Article  Google Scholar 

  18. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proc Fifth Berkeley Symp Math Stat Probab 1:287–297. http://www-m9.ma.tum.de/foswiki/pub/WS2010/CombOptSem/kMeans.pdf

  19. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer, Norwell

    Google Scholar 

  20. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comp Geosci 10:191–203

    Article  Google Scholar 

  21. Lasch P, Haensch W, Naumann D, Diem M (2004) Cluster analysis of colorectal adenocarcinoma imaging data: a FT-IR microspectroscopic study. Biochim Biophys Acta 1688:176–186

    CAS  Google Scholar 

  22. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 6 2(11):559–572

    Article  Google Scholar 

  23. Nascimento JMP, Bioucas-Dias JM (2003) Vertex component analysis: a fast algorithm to extract endmembers spectra from hyperspectral data. Proc First IbPRIA, ser LNCS 2652:626–635. doi:10.1007/978-3-540-44871-6_73

    Google Scholar 

  24. Matthäus C, Kale A, Chernenko T, Torchilin V, Diem M (2008) New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on Raman microscopy. Mol Pharm 5:287–293

    Article  Google Scholar 

  25. Awa K, Okumura T, Shinzawa H, Otsuka M, Ozaki Y (2008) Self-modeling curve resolution (SMCR) analysis of near-infrared (NIR) imaging data of pharmaceutical tablets. Anal Chim Acta 619:81–86

    Article  CAS  Google Scholar 

  26. Lopes MB, Wolff J, Bioucas-Dias JM, Figueiredo MAT (2010) Near-infrared hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemometric characterization of counterfeit tablets. Anal Chem 82:1462–1469

    Article  CAS  Google Scholar 

  27. Vaden TD, de Boer TS, Simons JP, Snoek LC, Suhai S, Paisz B (2008) Vibrational spectroscopy and conformational structure of protonated polyalanine peptides isolated in the gas phase. J Phys Chem A 112:4608–4616

    Article  CAS  Google Scholar 

  28. Zhuang W, Hayashi T, Mukamel S (2009) Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges. Angew Chem Int Ed Engl 48:3750–3781

    Article  CAS  Google Scholar 

  29. Caspers PJ, Lucassen GW, Puppels GJ (2003) Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys J 85:572–580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CK and JP acknowledge financial support of the European Union via the Europäischer Fonds für Regionale Entwicklung (EFRE) and the “Thüringer Ministerium für Bildung, Wissenschaft und Kultur” (Project: B714-07037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Krafft.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedegaard, M., Matthäus, C., Hassing, S. et al. Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor Chem Acc 130, 1249–1260 (2011). https://doi.org/10.1007/s00214-011-0957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0957-1

Keywords

Navigation