Skip to main content
Log in

Field-deployable whole-cell bioluminescent biosensors: so near and yet so far

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of smart supports and bioinspired materials to confine living cells and use them for field-deployable biosensors has recently attracted much attention. In particular, bioluminescent whole-cell biosensors designed to respond to different analytes or classes of analyte have been successfully implemented in portable and cost-effective analytical devices. Significant advances in detection technology, biomaterial science, and genetic engineering of cells have recently been reported. Now the challenge is to move from benchtop traditional cell-based assays to portable biosensing devices. Improvement of the analytical performance of these biosensors depends on the availability of optimized bioluminescent reporters, and promising approaches that go beyond reporter gene technology are emerging. To enable handling of cells as ready-to-use reagents, nature-inspired strategies have been used, with the objective of keeping cells in a dormant state until use. Several issues must still be investigated, for example long-term viability of cells, the possibility of performing real-time analysis, and multiplexing capability.

Concept of whole-cell bioluminescent biosensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. http://goldbook.iupac.org Last update: 2012-08-19; version: 2.3.2

  2. Directive 2003/15/EC of the European Parliament and the Council of 27 February amending Directive 76/786/EEC on the approximation of the laws of the member States relating to cosmetic products. Off J Eur Communities L66, 26–35

  3. Raut N, O’Connor G, Pasini P, Daunert S (2012) Engineered cells as biosensing systems in biomedical analysis. Anal Bioanal Chem 402:3147–3159

    Article  CAS  Google Scholar 

  4. Lagarde F, Jaffrezic-Renault N (2011) Cell-based electrochemical biosensors for water quality assessment. Anal Bioanal Chem 400:947–964

    Article  CAS  Google Scholar 

  5. Alloush HM, Anderson E, Martin AD, Ruddock MW, Angell JE, Hill PJ, Mehta P, Smith MA, Smith JG, Salisbury VC (2010) A bioluminescent microbial biosensor for in vitro pretreatment assessment of cytarabine efficacy in leukemia. Clin Chem 56:1862–1870

    Article  CAS  Google Scholar 

  6. Elad T, Belkin S (2012) Whole-cell biochips for online water monitoring. Bioeng Bugs 3:124–128

    Article  Google Scholar 

  7. Zhang D, He Y, Wang Y, Wang H, Wu L, Aries E, Huang WE (2012) Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microb Biotechnol 5:87–97

    Article  CAS  Google Scholar 

  8. Jouanneau S, Durand MJ, Thouand G (2012) Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. Environ Sci Technol 46:11979–11987

    Article  CAS  Google Scholar 

  9. Cheli F, Battaglia D, Pinotti L, Baldi A (2012) State of the art in feedstuff analysis: a technique-oriented perspective. J Agric Food Chem 60:9529–9542

    Article  CAS  Google Scholar 

  10. Cevenini L, Michelini E, D’Elia M, Guardigli M, Roda A (2013) Dual-color bioluminescent bioreporter for forensic analysis: evidence of androgenic and anti-androgenic activity of illicit drugs. Anal Bioanal Chem 405:1035–1045

    Article  CAS  Google Scholar 

  11. Charrier T, Chapeau C, Bendria L, Picart P, Daniel P, Thouand G (2011) A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor. Anal Bioanal Chem 400:1061–1070

    Article  CAS  Google Scholar 

  12. Roda A, Cevenini L, Michelini E, Branchini BR (2011) A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens Bioelectron 26:3647–3653

    Article  CAS  Google Scholar 

  13. Ben-Yoav H, Melamed S, Freeman A, Shacham-Diamand Y, Belkin S (2011) Whole-cell biochips for bio-sensing: integration of live cells and inanimate surfaces. Crit Rev Biotechnol 31:337–353

    Article  CAS  Google Scholar 

  14. Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303

    Article  CAS  Google Scholar 

  15. Scott D, Dikici E, Ensor M, Daunert S (2011) Bioluminescence and its impact on bioanalysis. Annu Rev Anal Chem (Palo Alto Calif) 4:297–319

    Article  CAS  Google Scholar 

  16. Michelini E, Cevenini L, Mezzanotte L, Roda A (2009) Luminescent probes and visualization of bioluminescence. Methods Mol Biol 574:1–13

    Article  CAS  Google Scholar 

  17. Branchini BR, Southworth TL, Khattak NF, Michelini E, Roda A (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345:140–148

    Article  CAS  Google Scholar 

  18. Michelini E, Cevenini L, Mezzanotte L, Ablamsky D, Southworth T, Branchini BR, Roda A (2008) Combining intracellular and secreted bioluminescent reporter proteins for multicolor cell-based assays. Photochem Photobiol Sci 7:212–217

    Article  CAS  Google Scholar 

  19. Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS (2010) Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PLoS One 5(8):e12441

    Article  Google Scholar 

  20. Ataei F, Torkzadeh-Mahani M, Hosseinkhani S (2013) A novel luminescent biosensor for rapid monitoring of IP3 by split-luciferase complementary assay. Biosens Bioelectron 41:642–648

    Article  CAS  Google Scholar 

  21. Scott D, Hamorsky KT, Ensor CM, Anderson KW, Daunert S (2011) Cyclic AMP receptor protein-aequorin molecular switch for cyclic AMP. Bioconj Chem 22:475–481

    Article  CAS  Google Scholar 

  22. Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA (2003) A B cell-based sensor for rapid identification of pathogens. Science 301:213–485

    Article  CAS  Google Scholar 

  23. Lam MH, Stagljar I (2012) Strategies for membrane interaction proteomics: no mass spectrometry required. Proteomics 12:1519–1526

    Article  CAS  Google Scholar 

  24. Roda A, Guardigli M, Michelini E, Mirasoli M (2009) Nanobioanalytical luminescence: Förster-type energy transfer methods. Anal Bioanal Chem 393:109–123

    Article  CAS  Google Scholar 

  25. Rebois RV, Robitaille M, Pétrin D, Zylbergold P, Trieu P, Hébert TE (2008) Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells. Methods 45:214–218

    Article  CAS  Google Scholar 

  26. Cheng KC, Inglese J (2012) A coincidence reporter-gene system for high-throughput screening. Nat Methods 9:937

    Article  CAS  Google Scholar 

  27. Michelini E, Roda A (2012) Staying alive: new perspectives on cell immobilization for biosensing purposes. Anal Bioanal Chem 402:1785–1797

    Article  CAS  Google Scholar 

  28. Blondeau M, Coradin T (2012) Living materials from sol–gel chemistry: current challenges and perspectives. J Mater Chem 22:22335–22343

    Article  CAS  Google Scholar 

  29. Melamed S, Elad T, Belkin S (2012) Microbial sensor cell arrays. Curr Opin Biotechnol 23(1):2–8

    Article  CAS  Google Scholar 

  30. Yan S, Shi Y, Xiao Z, Zhou M, Yan W, Shen H, Hu D (2012) Development of biosensors based on the one-dimensional semiconductor nanomaterials. J Nanosci Nanotechnol 12:6873–6879

    Article  CAS  Google Scholar 

  31. Dhanekar S, Jain S (2013) Porous silicon biosensor: current status. Biosens Bioelectron 41:54–64

    Article  CAS  Google Scholar 

  32. Flavel BS, Sweetman MJ, Shearer CJ, Shapter JG, Voelcker NH (2011) Micropatterned arrays of porous silicon: toward sensory biointerfaces. ACS Appl Mater Interfaces 3:2463–2471

    Article  CAS  Google Scholar 

  33. Esquembre R, Pinto SN, Poveda JA, Prieto M, Mateo CR (2012) Immobilization and characterization of giant unilamellar vesicles (GUVs) within porous silica glasses. Soft Matter 8:408–417

    Article  CAS  Google Scholar 

  34. Harper JC, Khripin CY, Carnes EC, Ashley CE, Lopez DM, Savage T, Jones HD, Davis RW, Nunez DE, Brinker LM, Kaehr B, Brozik SM, Brinker CJ (2010) Cell-directed integration into three-dimensional lipid–silica nanostructured matrices. ACS Nano 4:5539–5550

    Article  CAS  Google Scholar 

  35. Checa SK, Zurbriggen MD, Soncini FC (2012) Bacterial signaling systems as platforms for rational design of new generations of biosensors. Curr Opin Biotechnol 23:766–772

    Article  CAS  Google Scholar 

  36. Date A, Pasini P, Daunert S (2010) Fluorescent and bioluminescent cell–based sensors: strategies for their preservation. Adv Biochem Eng Biotechnol 117:57–75

    CAS  Google Scholar 

  37. Yoo SK, Lee JH, Yun SS, Gu MB, Lee JH (2007) Fabrication of a bio-MEMS based cell-chip for toxicity monitoring. Biosens Bioelectron 22:1586–1592

    Article  CAS  Google Scholar 

  38. Affi M, Solliec C, Legentillomme P, Comiti J, Legrand J, Thouand G (2009) Numerical design of a card and related physicochemical phenomena occurring inside agarose-immobilized bacteria: a valuable tool for increasing our knowledge of biosensors. Sens Actuators B Chem 138:310–317

    Article  CAS  Google Scholar 

  39. Ripp S, Jegier P, Johnson CM, Brigati JR, Sayler GS (2008) Bacteriophage-amplified bioluminescent sensing of Escherichia coli O157:H7. Anal Bioanal Chem 391:507–14

    Article  CAS  Google Scholar 

  40. Funes-Huacca M, Wu A, Szepesvari E, Rajendran P, Kwan-Wong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R (2012) Portable self-contained cultures for phage and bacteria made of paper and tape. Lab Chip 12:4269–78

    Article  CAS  Google Scholar 

  41. Date A, Pasini P, Daunert S (2007) Construction of spores for portable bacterial whole-cell biosensing systems. Anal Chem 79:9391–9397

    Article  CAS  Google Scholar 

  42. Yang SH, Hong D, Lee J, Ko EH, Choi IS (2013) Artificial spores: cytocompatible encapsulation of individual living cells within thin, tough artificial shells. Small 9:178–86

    Article  CAS  Google Scholar 

  43. Yang SH, Lee KB, Kong B, Kim J-H, Kim H-S, Choi IS (2009) Biomimetic encapsulation of individual cells with silica. Angew Chem Int Ed 48:9160–9163

    Article  CAS  Google Scholar 

  44. Li H, Lopes N, Moser S, Sayler G, Ripp S (2012) Silicon photomultiplier (SPM) detection of low-level bioluminescence for the development of deployable whole-cell biosensors: possibilities and limitations. Biosens Bioelectron 33:299–303

    Article  Google Scholar 

  45. Christensen DA, Herron JN (2009) Optical system design for biosensors based on CCD detection. Methods Mol Biol 503:239–245

    Article  CAS  Google Scholar 

  46. Bolton EK, Sayler GS, Nivens DE, Rochelle JM, Ripp S, Simpson ML (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuators B Chem 85:179–185

    Article  CAS  Google Scholar 

  47. Date A, Pasini P, Daunert S (2010) Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Anal Bioanal Chem 398:349–356

    Article  CAS  Google Scholar 

  48. French CE, de Mora K, Joshi N, Elfick A, Haseloff J, Ajioka J (2011) In National Academies Press (US) The Science and Applications of Synthetic and Systems Biology: Workshop Summary

  49. Zhou M, Dong S (2011) Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Acc Chem Res 44:1232–1243

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Michelini.

Additional information

Published in the topical collection Optical Nanosensing in Cells with guest editor Francesco Baldini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelini, E., Cevenini, L., Calabretta, M.M. et al. Field-deployable whole-cell bioluminescent biosensors: so near and yet so far. Anal Bioanal Chem 405, 6155–6163 (2013). https://doi.org/10.1007/s00216-013-7043-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7043-6

Keywords

Navigation