Skip to main content

Micro/Nano Biosensors for Living Cell and Molecule Analysis

  • Chapter
  • First Online:
Micro/Nano Cell and Molecular Sensors
  • 709 Accesses

Abstract

The novel micro/nano cell and molecule biosensors are developed based on the traditional microfabrication and novel nanotechnology. Traditional biosensors, such as microelectrode array, impedance sensor, field-effect transistor, and light addressable potentiometric sensor, are useful tools in studying the cell biology and molecule analysis, while the nanobiosensor- and nanomaterial modified biosensors emerge gradually with the advance of nanotechnology. These nanobiosensor can achieve the single cell monitoring with high-quality signals, and nanomaterial modified biosensors have demonstrated excellent performance in cell and molecule applications. Combination of sensor detection technology and nanotechnology, the novel micro/nano cell, and molecule biosensors can explore a wide way in fields of biomedicine and environment monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fanigliulo A, Accossato P, Adami M, Lanzi M, Martinoia S, Paddeu S, Parodi M, Rossi A, Sartore M, Grattarola M. Comparison between a LAPS and an FET-based sensor for cell-metabolism detection. Sensors Actuators B Chem. 1996;32(1):41–8.

    Article  CAS  Google Scholar 

  2. Hu N, Wu C, Ha D, Wang T, Liu Q, Wang P. A novel microphysiometer based on high sensitivity LAPS and microfluidic system for cellular metabolism study and rapid drug screening. Biosens Bioelectron. 2013;40(1):167–73.

    Article  PubMed  Google Scholar 

  3. Giaever I, Keese CR. A morphological biosensor for mammalian cells. Nature. 1993;366(6455):591–2.

    Article  CAS  PubMed  Google Scholar 

  4. Giaever I, Keese C. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci. 1984;81(12):3761–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giaever I, Keese CR. Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A. 1991;88(17):7896–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keese CR, Wegener J, Walker SR, Giaever I. Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A. 2004;101(6):1554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhäusser A, Garrido JA. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater. 2011;23(43):5045–9.

    Article  CAS  PubMed  Google Scholar 

  8. Xiao L, Hu Z, Zhang W, Wu C, Yu H, Wang P. Evaluation of doxorubicin toxicity on cardiomyocytes using a dual functional extracellular biochip. Biosens Bioelectron. 2010;26(4):1493–9.

    Article  CAS  PubMed  Google Scholar 

  9. Brüggemann D, Wolfrum B, Maybeck V, Mourzina Y, Jansen M, Offenhäusser A. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology. 2011;22(26):265104.

    Article  PubMed  Google Scholar 

  10. Xie C, Lin Z, Hanson L, Cui Y, Cui B. Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol. 2012;7(3):185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng D, Zhang H, Zhu D, Li J, San L, Wang Z, Wang C, Wang Y, Wang L, Zuo X, Mi X. A novel ultrasensitive electrochemical DNA sensor based on double tetrahedral nanostructures. Biosens Bioelectron. 2015;71:434–8.

    Article  CAS  PubMed  Google Scholar 

  12. Li J, Lee E-C. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors. Biosens Bioelectron. 2015;71:414–9.

    Article  CAS  PubMed  Google Scholar 

  13. Wang H-B, Zhang H-D, Chen Y, Liu Y-M. A fluorescent biosensor for protein detection based on poly(thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosens Bioelectron. 2015;74:581–6.

    Article  CAS  PubMed  Google Scholar 

  14. Drexler KE. Engine of creation. The coming era of nanotechnology. New York: Anchor Books; 1986.

    Google Scholar 

  15. Drexler KE. Nanosystems: molecular machinery, manufacturing, and computation. New York: Wiley; 1992.

    Google Scholar 

  16. Sahoo S, Parveen S, Panda J. The present and future of nanotechnology in human health care. Nanomed Nanotechnol Biol Med. 2007;3(1):20–31.

    Article  CAS  Google Scholar 

  17. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.

    Article  CAS  PubMed  Google Scholar 

  18. Thomas C, Springer P, Loeb G, Berwald-Netter Y, Okun L. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res. 1972;74(1):61–6.

    Article  PubMed  Google Scholar 

  19. Gesteland R, Howland B, Lettvin J, Pitts W. Comments on microelectrodes. Proc IRE. 1959;47(11):1856–62.

    Article  Google Scholar 

  20. Robinson DA. The electrical properties of metal microelectrodes. Proc IEEE. 1968;56(6):1065–71.

    Article  CAS  Google Scholar 

  21. Gross G, Rieske E, Kreutzberg G, Meyer A. A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett. 1977;6(2):101–5.

    Article  CAS  PubMed  Google Scholar 

  22. Gross GW. Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. Biomed Eng IEEE Trans. 1979;5:273–9.

    Article  Google Scholar 

  23. Pine J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods. 1980;2(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  24. Gross GW, Rhoades B, Jordan R. Neuronal networks for biochemical sensing. Sensors Actuators B Chem. 1992;6(1):1–8.

    Article  CAS  Google Scholar 

  25. Borkholder D, DeBusschere BD, Kovacs G. An approach to the classification of unknown biological agents with cell based sensors. 1998.

    Google Scholar 

  26. DeBusschere BD, Kovacs GT. Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens Bioelectron. 2001;16(7):543–56.

    Article  CAS  PubMed  Google Scholar 

  27. Gross GW, Rhoades BK, Azzazy HM, Wu M-C. The use of neuronal networks on multielectrode arrays as biosensors. Biosens Bioelectron. 1995;10(6):553–67.

    Article  CAS  PubMed  Google Scholar 

  28. Gross GW, Schwalm FU. A closed flow chamber for long-term multichannel recording and optical monitoring. J Neurosci Methods. 1994;52(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  29. Rhoades BK, Gross GW. Potassium and calcium channel dependence of bursting in cultured neuronal networks. Brain Res. 1994;643(1):310–8.

    Article  CAS  PubMed  Google Scholar 

  30. Giaever I, Keese CR. Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. Biomed Eng IEEE Trans. 1986;2:242–7.

    Article  Google Scholar 

  31. Mitra P, Keese CR, Giaever I. Electric measurements can be used to monitor the attachment and spreading of cells in tissue culture. Biotechniques. 1991;11(4):504–10.

    CAS  PubMed  Google Scholar 

  32. Keese CR, Giaever I. A whole cell biosensor based on cell-substrate interactions. In Editor (Ed.)^(Eds.): Book A whole cell biosensor based on cell-substrate interactions (IEEE, 1990, edn.), p. 500–501.

    Google Scholar 

  33. Keese CR, Giaever I. A biosensor that monitors cell morphology with electrical fields. Eng Med Biol Magaz IEEE. 1994;13(3):402–8.

    Article  Google Scholar 

  34. Lo C-M, Keese CR, Giaever I. Monitoring motion of confluent cells in tissue culture. Exp Cell Res. 1993;204(1):102–9.

    Article  CAS  PubMed  Google Scholar 

  35. Lo C-M, Keese CR, Giaever I. pH changes in pulsed CO2 incubators cause periodic changes in cell morphology. Exp Cell Res. 1994;213(2):391–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ghosh PM, Keese CR, Giaever I. Morphological response of mammalian cells to pulsed ac fields. Bioelectrochem Bioenerg. 1994;33(2):121–33.

    Article  Google Scholar 

  37. Xiao C, Lachance B, Sunahara G, Luong JH. Assessment of cytotoxicity using electric cell-substrate impedance sensing: concentration and time response function approach. Anal Chem. 2002;74(22):5748–53.

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Zhu J, Deng C, Xing W-l, Cheng J. An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing. Lab Chip. 2008;8(6):872–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B. Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens Bioelectron. 1997;12(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  40. Chang B, Chen C, Ding S, Chen DC, Chang H. Impedimetric monitoring of cell attachment on interdigitated microelectrodes. Sensors Actuators B Chem. 2005;105(2):159–63.

    Article  CAS  Google Scholar 

  41. Wang L, Wang H, Mitchelson K, Yu Z, Cheng J. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell–substrate impedance sensors. Biosens Bioelectron. 2008;24(1):14–21.

    Article  PubMed  Google Scholar 

  42. Bergveld P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng. 1970;1:70–71c. BME-17.

    Article  Google Scholar 

  43. Chang K-S, Sun C-J, Chiang P-L, Chou A-C, Lin M-C, Liang C, Hung H-H, Yeh Y-H, Chen C-D, Pan C-Y. Monitoring extracellular K+ flux with a valinomycin-coated silicon nanowire field-effect transistor. Biosens Bioelectron. 2012;31(1):137–43.

    Article  CAS  PubMed  Google Scholar 

  44. Fromherz P. Semiconductor chips with ion channels, nerve cells and brain. Phys E Low-Dimension Syst Nanostruct. 2003;16(1):24–34.

    Article  Google Scholar 

  45. Ohtake T, Hamai C, Uno T, Tabata H, Kawai T. Immobilization of probe DNA on Ta2O5 thin film and detection of hybridized helix DNA using IS-FET. Jpn J Appl Phys. 2004;43(9A):L1137.

    Article  CAS  Google Scholar 

  46. Ueno K, Inoue I, Akoh H, Kawasaki M, Tokura Y, Takagi H. Field-effect transistor on SrTiO3 with sputtered Al2O3 gate insulator, arXiv preprint cond-mat/0306436. 2003.

    Google Scholar 

  47. Finn A, Alderman J, Schweizer J. Towards an optimization of FET-based bio-sensors. Eur Cells Mater. 2002;4(Sup 2):21–3.

    Google Scholar 

  48. Oesch U, Caras S, Janata J. Field effect transistors sensitive to sodium and ammonium ions. Anal Chem. 1981;53(13):1983–6.

    Article  CAS  Google Scholar 

  49. Bratov A, Abramova N, Domınguez C, Baldi A. Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk. Anal Chim Acta. 2000;408(1):57–64.

    Article  CAS  Google Scholar 

  50. Zeck G, Fromherz P. Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip. Proc Natl Acad Sci. 2001;98(18):10457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fromherz P, Offenhausser A, Vetter T, Weis J. A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science. 1991;252(5010):1290–3.

    Article  CAS  PubMed  Google Scholar 

  52. Hafeman DG, Parce JW, McConnell HM. Light-addressable potentiometric sensor for biochemical systems. Science. 1988;240(4856):1182–5.

    Article  CAS  PubMed  Google Scholar 

  53. Hafner F. Cytosensor® microphysiometer: technology and recent applications. Biosens Bioelectron. 2000;15(3):149–58.

    Article  CAS  PubMed  Google Scholar 

  54. Eklund SE, Snider RM, Wikswo J, Baudenbacher F, Prokop A, Cliffel DE. Multianalyte microphysiometry as a tool in metabolomics and systems biology. J Electroanal Chem. 2006;587(2):333–9.

    Article  CAS  Google Scholar 

  55. Yicong W, Ping W, Xuesong Y, Gaoyan Z, Huiqi H, Weimin Y, Xiaoxiang Z, Jinghong H, Dafu C. Drug evaluations using a novel microphysiometer based on cell-based biosensors. Sensors Actuators B Chem. 2001;80(3):215–21.

    Article  Google Scholar 

  56. Yicong W, Ping W, Xuesong Y, Qingtao Z, Rong L, Weimin Y, Xiaoxiang Z. A novel microphysiometer based on MLAPS for drugs screening. Biosens Bioelectron. 2001;16(4):277–86.

    Article  CAS  PubMed  Google Scholar 

  57. Hu N, Ha D, Wu C, Cheng G, Yu H, Wang T, Wu J, Cai H, Liu Q, Wang P. Design of microphysiometer based on multiparameter cell-based biosensors for quick drug analysis. J Innov Opt Health Sci. 2012;5(01):1150005.

    Article  Google Scholar 

  58. Qing Q, Pal SK, Tian B, Duan X, Timko BP, Cohen-Karni T, Murthy VN, Lieber CM. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc Natl Acad Sci. 2010;107(5):1882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010;10(3):1098–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Giljohann DA, Mirkin CA. Drivers of biodiagnostic development. Nature. 2009;462(7272):461–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scanziani M, Häusser M. Electrophysiology in the age of light. Nature. 2009;461(7266):930–9.

    Article  CAS  PubMed  Google Scholar 

  62. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth F. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981;391(2):85–100.

    Article  CAS  PubMed  Google Scholar 

  63. Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science. 2010;329(5993):830–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tian B, Xie P, Kempa TJ, Bell DC, Lieber CM. Single-crystalline kinked semiconductor nanowire superstructures. Nat Nanotechnol. 2009;4(12):824–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Patolsky F, Zheng G, Lieber CM. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc. 2006;1(4):1711–24.

    Article  CAS  PubMed  Google Scholar 

  66. Duan X, Gao R, Xie P, Cohen-Karni T, Qing Q, Choe HS, Tian B, Jiang X, Lieber CM. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol. 2012;7(3):174–9.

    Article  CAS  Google Scholar 

  67. Sakmann B. Single-channel recording. New York: Springer Science & Business Media; 2013.

    Google Scholar 

  68. Navarrete EG, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge PW, Patlolla B, Lee AS. Screening drug-induced arrhythmia using human induced pluripotent stem cell–derived cardiomyocytes and low-impedance microelectrode arrays. Circulation. 2013;128(11 suppl 1):S3–13.

    Article  CAS  PubMed  Google Scholar 

  69. Yamanaka K. Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices. Jpn J Appl Phys. 1989;28(4R):632.

    Article  CAS  Google Scholar 

  70. Mafakheri E, Salimi A, Hallaj R, Ramazani A, Kashi MA. Synthesis of iridium oxide nanotubes by electrodeposition into polycarbonate template: fabrication of chromium (III) and arsenic (III) electrochemical sensor. Electroanalysis. 2011;23(10):2429–37.

    Article  CAS  Google Scholar 

  71. Cogan SF, Ehrlich J, Plante TD, Smirnov A, Shire DB, Gingerich M, Rizzo JF. Sputtered iridium oxide films for neural stimulation electrodes. J Biomed Mater Res B Appl Biomater. 2009;89(2):353–61.

    Article  PubMed  Google Scholar 

  72. Lin ZC, Xie C, Osakada Y, Cui Y, Cui B. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat Commun. 2014;5:1–10.

    Google Scholar 

  73. Zimmermann U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes, Membrane transport in plants. Berlin: Springer; 1974. p. 146–53.

    Google Scholar 

  74. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider P. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang D, Reese TS. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J. 1990;58(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhai Y, Zhang Y, Qin F, Yao X. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens Bioelectron. 2015;70:130–6.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou J, Du L, Zou L, Zou Y, Hu N, Wang P. An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A—Au nanoparticle modified gold electrode. Sensors Actuators B Chem. 2014;197:220–7.

    Article  CAS  Google Scholar 

  78. Aleshin AN. Polymer nanofibers and nanotubes: charge transport and device applications. Adv Mater. 2006;18(1):17–27.

    Article  CAS  Google Scholar 

  79. Kaiser AB. Electronic transport properties of conducting polymers and carbon nanotubes. Rep Prog Phys. 2001;64(1):1.

    Article  CAS  Google Scholar 

  80. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003;3(7):929–33.

    Article  CAS  Google Scholar 

  81. Yoon H, Lee SH, Kwon OS, Song HS, Oh EH, Park TH, Jang J. Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. Angew Chem Int Ed. 2009;48(15):2755–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hu, N., Fang, J., Zou, L. (2016). Micro/Nano Biosensors for Living Cell and Molecule Analysis. In: Wang, P., Wu, C., Hu, N., Hsia, K. (eds) Micro/Nano Cell and Molecular Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-10-1658-5_2

Download citation

Publish with us

Policies and ethics