Skip to main content
Log in

A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We describe an electrochemiluminescence (ECL) immunoarray incorporated into a prototype microfluidic device for highly sensitive protein detection and apply this system to accurate, sensitive measurements of prostate-specific antigen (PSA) and interleukin-6 (IL-6) in serum. The microfluidic system employed three molded polydimethylsiloxane (PDMS) channels on a conductive pyrolytic graphite chip (2.5 × 2.5 cm) inserted into a machined chamber and interfaced with a pump, switching valve, and sample injector. Each of the three PDMS channels encompasses three 3 μL analytical wells. Capture-antibody-decorated single-wall carbon nanotube forests are fabricated in the bottom of the wells. The antigen is captured by these antibodies on the well bottoms. Then, a RuBPY-silica-secondary antibody (Ab2) label is injected to bind to antigen on the array, followed by injection of sacrificial reductant tripropylamine (TPrA) to produce ECL. For detection, the chip is placed into an open-top ECL measuring cell, and the channels are in contact with electrolyte in the chamber. Potential applied at 0.95 V versus Ag/AgCl oxidizes TPrA to produce ECL by redox cycling the RuBPY species in the particles, and ECL light is measured by a charge-coupled device camera. This approach achieved ultralow detection limits of 100 fg mL−1 for PSA (9 zeptomole) and 10 fg mL−1 (1 zeptomole) for IL-6 in calf serum, a 10–25-fold improvement of a similar non-microfluidic array. PSA and IL-6 in synthetic cancer patient serum samples were detected in 1.1 h and results correlated well with single-protein enzyme-linked immunosorbent assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kingsmore SF (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discovery 5:310–320

    Article  CAS  Google Scholar 

  2. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  Google Scholar 

  3. Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3:267–275

    Article  CAS  Google Scholar 

  4. Giljohann DA, Mirkin CA (2009) Drivers of biodiagnostic development. Nature 426:461–464

    Article  Google Scholar 

  5. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nature Rev Cancer 5:845–856

    Article  CAS  Google Scholar 

  6. Rusling JF, Kumar CV, Patel V, Gutkind JS (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135:2496–2511

    Article  CAS  Google Scholar 

  7. Zhang C, Xing D (2010) Single-molecule DNA amplification and analysis using microfluidics. Chem Rev 110:4910–4947

    Article  CAS  Google Scholar 

  8. Gupta K, Kim D, Ellison D, Smith C, Kundu A, Tuan J, Suhc K, Levchenko A (2010) Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab Chip 10:2019–2031

    Article  CAS  Google Scholar 

  9. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84:487–515

    Article  CAS  Google Scholar 

  10. Choi S, Goryll M, Sin L, Wong PK, Chae J (2011) Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluidics and Nanofluidics 10:231–247

    Article  CAS  Google Scholar 

  11. Mohammed M, Desmulliez M (2011) Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. Lab Chip 11:569–595

    Article  CAS  Google Scholar 

  12. Pagaduan JV, Yang W, Woolley AT (2011) Optimization of monolithic columns for microfluidic devices. Proc SPIE 8031:80311V

    Article  Google Scholar 

  13. Ng A, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397:991–1007

    Article  CAS  Google Scholar 

  14. Findlay JW, Smith WC, Lee JW, Nordblom GD, Das I, DeSilva BS, Khan MN, Bowsher RR (2000) Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J Pharm Biomed Anal 21:1249–1273

    Article  CAS  Google Scholar 

  15. Schmalzing D, Nashabeh W (1997) Capillary elecúophoresis based immunoassays: a critical review. Electrophoresis 18:2184–2193

    Article  CAS  Google Scholar 

  16. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  Google Scholar 

  17. Hawkridge AM, Muddiman DC (2009) Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality. Ann Rev Anal Chem 2:265–277

    Article  CAS  Google Scholar 

  18. Hanash SM, Pitteri SJ, Faca VM (2008) Mining the plasma proteome for cancer biomarkers. Nature 452:571–579

    Article  CAS  Google Scholar 

  19. Bange A, Halsall HB, Heinemann WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20:2488–2503

    Article  CAS  Google Scholar 

  20. Gervaisab L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9:3330–3337

    Article  Google Scholar 

  21. Garcia-Alonso J et al (2011) Micro-screening toxicity system based on living magnetic yeast and gradient chips. Anal Bioanal Chem 400:1009–1013

    Article  CAS  Google Scholar 

  22. Fosdick SF, Crooks JA, Chang BY, Crooks RM (2010) Two-dimensional bipolar electrochemistry. J Am Chem Soc 132:9226–9227

    Article  CAS  Google Scholar 

  23. Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA, Fahmy TM (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5:138–142

    Article  CAS  Google Scholar 

  24. Chikkaveeraiah BV, Mani V, Patel V, Gutkind JS, Rusling JF (2011) Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens Bioelectron 26:4477–4483

    Article  CAS  Google Scholar 

  25. Li Q, Tang D, Tang J, Su B, Chen G, Wei M (2011) Magneto-controlled electrochemical immunosensor for direct detection of squamous cell carcinoma antigen by using serum as supporting electrolyte. Biosens Bioelectron 27:153–159

    Article  Google Scholar 

  26. Fragoso A, Latta D, Laboria N, Germar F, Hansen-Hagge T, Kemmner W, Gärtner C, Klemm R, Dreseb K, O’Sullivan C (2011) Integrated microfluidic platform for the electrochemical detection of breast cancer markers in patient serum samples. Lab Chip 11:625–631

    Article  CAS  Google Scholar 

  27. Kellner C, Botero ML, Latta D, Drese K, Fragoso A, O’Sullivan C (2011) Automated microsystem for electrochemical detection of cancer markers. Electrophoresis 32:926–930

    Article  CAS  Google Scholar 

  28. Choi S, Chae C (2009) A microfluidic biosensor based on competitive protein adsorption for thyroglobulin detection. Biosens Bioelectron 25:118–123

    Article  CAS  Google Scholar 

  29. Jeon S, Kim SU, Jeon W, Shin CB (2009) Fabrication of multicomponent protein microarrays with microfluidic devices of poly(dimethylsiloxane). Macromol Res 17:192–196

    Article  CAS  Google Scholar 

  30. Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho EC, Mirica KA, Whitesides GM (2010) Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape. Lab on a Chip 10:3201–3205

    Article  CAS  Google Scholar 

  31. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320

    Article  CAS  Google Scholar 

  32. Sia SK, Linder V, Parviz B, Siegel A, Whitesides GM (2004) An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew Chem 116:504–508

    Article  Google Scholar 

  33. Liu H, Crooks RM (2012) A paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem 84:2528–2532

    Article  CAS  Google Scholar 

  34. Ge L, Yan J, Song X, Yan M, Ge S, Yu J (2012) Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33:1024–1031

    Article  CAS  Google Scholar 

  35. Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306

    Article  CAS  Google Scholar 

  36. Pittet P, Lu G, Galvan J, Ferrigno R, Blum L, Leca-Bouvier B (2008) PCB technology-based electrochemiluminescence microfluidic device for low-cost portable analytical systems. IEEE Sensors Journal 8:565–571

    Article  CAS  Google Scholar 

  37. Pittet P, Lu G, Galvan J, Ferrigno R, Blum L, Leca-Bouvier B (2007) PCB-based integration of electrochemiluminescence detection for microfluidic systems. Analyst 132:409–411

    Article  CAS  Google Scholar 

  38. Niskanen AJ, Ylinen-Hinkka T, Kulmala S, Franssila S (2011) Integrated microelectrode hot electron electrochemiluminescent sensor for microfluidic applications. Sensors and Actuators B 152:56–62

    Article  Google Scholar 

  39. Malhotra R, Patel V, Chikkaveeraiah BV, Munge BS, Cheong SC, Zain RB, Abraham MT, Dey DK, Gutkind JS, Rusling JF (2012) Oral cancer detection in the clinic using an ultrasensitive microfluidic array for a panel of biomarker proteins. Anal Chem 84:6249–6255

    Article  CAS  Google Scholar 

  40. Tang CK, Vaze A, Rusling JF (2011) Fabrication of immunosensor microwell arrays from gold compact discs for detection of cancer biomarker proteins. Lab Chip 12:281–286

    Article  Google Scholar 

  41. Debad JB, Glezer EN, Leland JK, Sigal GB, Wholstadter J (2011) In: Bard, AJ (eds) Electrogenerated chemiluminescence. Marcel Dekker, New York, pp. 359–396

  42. Miao WJ (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553

    Article  CAS  Google Scholar 

  43. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    Article  CAS  Google Scholar 

  44. Forster RJ, Bertoncello P, Keyes TE (2009) Electrogenerated chemiluminescence. Annu Rev Anal Chem 2:359–385

    Article  CAS  Google Scholar 

  45. Healy DA, Hayes CJ, Leonard P, McKenna L, O’Kennedy R (2007) Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol 25:125–131

    Article  CAS  Google Scholar 

  46. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205

    Article  CAS  Google Scholar 

  47. Kim SN, Rusling JF, Papadimitrakopolous F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19:3214–3228

    Article  CAS  Google Scholar 

  48. Rusling JF, Yu X, Munge BS, Kim SN, Papadimitrakopoulos F (2009) Engineering the bioelectronic interface. In: Davis, J (eds) Royal Society of Chemistry, London, pp. 94–118

  49. Sardesai NP, Pan S, Rusling JF (2009) Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)3]2+-doped silica nanoparticles. Chem Commun 4968–4970

  50. Sardesai NP, Barron J, Rusling JF (2011) Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem 83:6698–6703

    Article  CAS  Google Scholar 

  51. Kai J, Puntambekar A, Santiago N, Lee SH, Sehy DW, Moore V, Han J, Ahn C (2012) A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA). Lab on a Chip 12:4257–4262. doi:10.1039/C2LC40585G

    Article  CAS  Google Scholar 

  52. Miao W, Choi JP, Bard AJ (2002) Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/tri-n-propylamine (TPrA) system revisited-a new route involving TPrA*+ cation radicals. J Am Chem Soc 124:14478

    Article  CAS  Google Scholar 

  53. Malhotra R, Papadimitrakopoulos F, Rusling JF (2010) Sequential layer analysis of protein immunosensors based on single wall carbon nanotube forests. Langmuir 26:15050–15056

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant no. EB014586 from the National Institute of Biomedical Imaging and Bioengineering, NIH. We also acknowledge FAPESP Proc. No. 11/02259-6 for financial support to Dr. R.C. Faria for a sabbatical visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Rusling.

Additional information

Published in the topical collection Bioelectroanalysis with guest editors Nicolas Plumeré, Magdalena Gebala, and Wolfgang Schuhmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3577 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sardesai, N.P., Kadimisetty, K., Faria, R. et al. A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins. Anal Bioanal Chem 405, 3831–3838 (2013). https://doi.org/10.1007/s00216-012-6656-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6656-5

Keywords

Navigation