Skip to main content

Advertisement

Log in

Simultaneous determination of testosterone, cortisol, and dehydroepiandrosterone in saliva by stable isotope dilution on-line in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have developed a simple and sensitive method for the simultaneous determination of testosterone (TES), cortisol (CRT), and dehydroepiandrosterone (DHEA) in saliva by automated online in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–tandem mass spectrometry (LC–MS/MS) using a Discovery HS F5 column. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample at a flow rate of 200 μL/min using a Supel-Q PLOT capillary column as an extraction device. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. The in-tube SPME LC–MS/MS method showed good linearity with correlation coefficients r ≥ 0.9998 for TES, CRT, and DHEA using their respective stable isotope-labeled internal standards. The intra-day and inter-day precisions (relative standard deviations) were below 4.9 and 8.5 % (n = 5), respectively. This method was successfully utilized to analyze TES, CRT, and DHEA in saliva samples without any other pretreatment or interference peaks, and the quantification limits (S/N = 10) of TES, CRT and DHEA were about 0.01, 0.03 and 0.29 ng/mL saliva, respectively. The recoveries of these compounds spiked into saliva samples were each above 94 %. This method was applied to analyze changes in salivary TES, CRT, and DHEA levels resulting from stress and fatigue load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130:355–391

    Article  Google Scholar 

  2. Peruzzo DC, Benatti BB, Ambrosano GM, Nogueira-Filho GR, Sallum EA, Casati MZ, Nociti FH Jr (2007) A systematic review of stress and psychological factors as possible risk factors for periodontal disease. J Periodontol 78:1491–1504

    Article  Google Scholar 

  3. Kudielka BM, Wust S (2010) Human models in acute and chronic stress: assessing determinants of individual hypothalamus–pituitary–adrenal axis activity and reactivity. Stress 13:1–14

    Article  Google Scholar 

  4. Ahn RS, Lee YJ, Choi JY, Kwon HB, Chun SI (2007) Salivary cortisol and DHEA levels in the Korean population: age-related differences, diurnal rhythm, and correlations with serum levels. Yonsei Med J 48:379–388

    Article  CAS  Google Scholar 

  5. Roberts AD, Wessely S, Chalder T, Papadopoulos A, Cleare AJ (2004) Salivary cortisol response to awakening in chronic fatigue syndrome. Br J Psychiatry 184:136–141

    Article  Google Scholar 

  6. Findling JW, Raff H (2006) Cushing’s syndrome: important issues in diagnosis and management. J Clin Endocrinol Metab 91:3746–3753

    Article  CAS  Google Scholar 

  7. Erickson D, Singh RJ, Sathananthan A, Vella A, Bryant SC (2012) Late-night salivary cortisol for diagnosis of Cushing’s syndrome by liquid chromatography/tandem mass spectrometry assay. Clin Endocrinol 76:467–472

    Article  CAS  Google Scholar 

  8. Ten S, New M, Maclaren N (2001) Clinical review 130: Addison’s disease 2001. J Clin Endocrinol Metab 86:2909–2922

    Article  CAS  Google Scholar 

  9. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP (2009) Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 94:2692–2701

    Article  CAS  Google Scholar 

  10. Hansen AM, Larsen AD, Rugulies R, Garde AH, Knudsen LE (2009) A review of the effect of the psychosocial working environment on physiological changes in blood and urine. Basic Clin Pharmacol Toxicol 105:73–83

    Article  CAS  Google Scholar 

  11. Namiki M, Akaza H, Shimazui T, Ito N, Iwamoto T, Baba K, Kumano H, Koh E, Tsujimura A, Matsumiya K, Horie S, Maruyama O, Marumo K, Yanase T, Kumamoto (2008) Clinical practice manual for late-onset hypogonadism syndrome. Int J Urol 15:377–388

    Article  CAS  Google Scholar 

  12. Chahal HS, Drake WM (2007) The endocrine system and ageing. J Pathol 211:173–180

    Article  CAS  Google Scholar 

  13. Buford TW, Willoughby DS (2008) Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl Physiol Nutr Metab 33:429–433

    Article  CAS  Google Scholar 

  14. Heaney JLJ, Phillips AC, Carrol D (2012) Ageing, physical function, and the diurnal rhythms of cortisol and dehydroepiandrosterone. Psychoneuroendocrinology 37:341–349

    Article  CAS  Google Scholar 

  15. Arlt W (2004) Dehydroepiandrosterone and ageing. Best Pract Res Clin Endocrinol Metab 18:363–380

    Article  CAS  Google Scholar 

  16. Nozaki S, Tanaka M, Mizuno K, Ataka S, Mizuma H, Tahara T, Sugino T, Shirai T, Eguchi A, Okuyama K, Yoshida K, Kajimoto Y, Kuratsune H, Kajimoto O, Watanabe Y (2009) Mental and physical fatigue-related biochemical alterations. Nutrition 25:51–57

    Article  CAS  Google Scholar 

  17. Le Panse B, Vibarel-Rebot N, Parage G, Albrings D, Amiot V, De Ceaurriz J, Collomp K (2010) Cortisol, DHEA, and testosterone concentrations in saliva in response to an international powerlifting competition. Stress 13:528–532

    Google Scholar 

  18. Goncharov N, Katsya G, Dobracheva A, Nizhnik A, Kolesnikova G, Herbst V, Westermann J (2006) Diagnostic significance of free salivary testosterone measurement using a direct luminescence immunoassay in healthy men and in patients with disorders of androgenic status. Aging Male 9:111–122

    Article  CAS  Google Scholar 

  19. Arafah BM, Nishiyama FJ, Tlaygeh H, Hejal R (2007) Measurement of salivary cortisol concentration in the assessment of adrenal function in critically ill subjects: a surrogate marker of the circulating free cortisol. J Clin Endocrinol Metab 92:2965–2971

    Article  CAS  Google Scholar 

  20. Cadore E, Lhullier F, Brentano M, Silva E, Ambrosini M, Spinelli R, Silva R, Kruel L (2008) Correlations between serum and salivary hormonal concentrations in response to resistance exercise. J Sports Sci 26:1067–1072

    Article  Google Scholar 

  21. Yu YZ, Shi JX (2009) Relationship between levels of testosterone and cortisol in saliva and aggressive behaviors of adolescents. Biomed Environ Sci 22:44–49

    Article  CAS  Google Scholar 

  22. Girardi C, Luz C, Cherubini K, de Figueiredo MA, Nunes ML, Salum FG (2011) Salivary cortisol and dehydroepiandrosterone (DHEA) levels, psychological factors in patients with oral lichen planus. Arch Oral Biol 56:864–868

    Article  CAS  Google Scholar 

  23. Vedhara K, Miles J, Bennett P, Plummer S, Tallon D, Brooks E, Gale L, Munnoch K, Schreiber-Kounine C, Fowler C, Lightman S, Sammon A, Rayter Z, Farndon J (2003) An investigation into the relationship between salivary cortisol, stress, anxiety and depression. Biol Psychol 62:89–96

    Article  Google Scholar 

  24. Patacchioli FR, Monnazzi P, Simeoni S, De Filippis S, Salvatori E, Coloprisco G, Martelletti P (2006) Salivary cortisol, dehydroepiandrosterone-sulphate (DHEA-S) and testosterone in women with chronic migraine. J Headache Pain 7:90–94

    Article  CAS  Google Scholar 

  25. Kataoka H, Matsuura E, Mitani K (2007) Determination of cortisol in human saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J Pharm Biomed Anal 44:160–165

    Article  CAS  Google Scholar 

  26. Jönsson BA, Malmberg B, Amilon A, Helene Garde A, Orbaek P (2003) Determination of cortisol in human saliva using liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 784:63–68

    Article  Google Scholar 

  27. Matsui F, Koh E, Yamamoto K, Sugimoto K, Sin HS, Maeda Y, Honma S, Namiki M (2009) Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for simultaneous measurement of salivary testosterone and cortisol in healthy men for utilization in the diagnosis of late-onset hypogonadism in males. Endocr J 56:1083–1093

    Article  CAS  Google Scholar 

  28. Turpeinen U, Välimäki MJ, Hämäläinen E (2009) Determination of salivary cortisol by liquid chromatography-tandem mass spectrometry. Scand J Clin Lab Invest 69:592–597

    Article  CAS  Google Scholar 

  29. Jensen MA, Hansen AM, Abrahamsson P, Nørgaard AW (2011) Development and evaluation of a liquid chromatography tandem mass spectrometry method for simultaneous determination of salivary melatonin, cortisol and testosterone. J Chromatogr B Anal Technol Biomed Life Sci 879:2527–2532

    Article  CAS  Google Scholar 

  30. Turpeinen U, Hämäläinen E, Haanpää M, Dunkel L (2012) Determination of salivary testosterone and androstendione by liquid chromatography-tandem mass spectrometry. Clin Chim Acta 413:594–599

    Article  CAS  Google Scholar 

  31. Perogamvros I, Owen LJ, Newell-Price J, Ray DW, Trainer PJ, Keevil BG (2009) Simultaneous measurement of cortisol and cortisone in human saliva using liquid chromatography-tandem mass spectrometry: application in basal and stimulated conditions. J Chromatogr B Anal Technol Biomed Life Sci 877:3771–3775

    Article  CAS  Google Scholar 

  32. McWhinney BC, Briscoe SE, Ungerer JP, Pretorius CJ (2010) Simultaneous measurement of cortisol and cortisone in human saliva using liquid chromatography-tandem mass spectrometry: application in basal and stimulated conditions. J Chromatogr B Anal Technol Biomed Life Sci 878:2863–2869

    Article  CAS  Google Scholar 

  33. Jones RL, Owen LJ, Adaway JE, Keevil BG (2012) Simultaneous analysis of cortisol and cortisone in saliva using XLC-MS/MS for fully automated online solid phase extraction. J Chromatogr B Anal Technol Biomed Life Sci 882:42–48

    Article  Google Scholar 

  34. Shibayama Y, Higashi T, Shimada K, Odani A, Mizokami A, Konaka H, Koh E, Namiki M (2009) Simultaneous determination of salivary testosterone and dehydroepiandrosterone using LC-MS/MS: method development and evaluation of applicability for diagnosis and medication for late-onset hypogonadism. J Chromatogr B Anal Technol Biomed Life Sci 877:2615–2623

    Article  CAS  Google Scholar 

  35. Kataoka H, Saito K (2012) Recent advances in column switching sample preparation in bioanalysis. Bioanalysis 4:809–832

    Article  CAS  Google Scholar 

  36. Kataoka H, Lord HL, Pawliszyn J (2000) Simple and rapid determination of amphetamine, methamphetamine, and their methylenedioxy derivatives in urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-electrospray ionization mass spectrometry. J Anal Toxicol 24:257–265

    CAS  Google Scholar 

  37. Kataoka H, Inoue R, Yagi K, Saito K (2009) Determination of nicotine, cotinine, and related alkaloids in human urine and saliva by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J Pharm Biomed Anal 49:108–114

    Article  CAS  Google Scholar 

  38. Saito K, Yagi K, Ishizaki A, Kataoka H (2010) Determination of anabolic steroids in human urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J Pharm Biomed Anal 52:727–733

    Article  CAS  Google Scholar 

  39. Kataoka H (2002) Automated sample preparation using in-tube solid-phase microextraction and its application—a review. Anal Bioanal Chem 373:31–45

    Article  CAS  Google Scholar 

  40. Kataoka H, Ishizaki A, Nonaka Y, Saito K (2009) Developments and applications of capillary microextraction techniques: a review. Anal Chim Acta 655:8–29

    Article  CAS  Google Scholar 

  41. Kataoka H (2010) Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 396:339–364

    Article  CAS  Google Scholar 

  42. Kataoka H, Saito K (2011) Recent advances in SPME techniques in biomedical analysis. J Pharm Biomed Anal 54:926–950

    Article  CAS  Google Scholar 

  43. Gröschl M, Rauh M (2006) Influence of commercial collection devices for saliva on the reliability of salivary steroids analysis. Steroids 71:1097–1100

    Article  Google Scholar 

  44. Katsumata M, Hirata K, Inagaki H, Hirata Y, Kawada T (2009) Evaluation of new saliva collection device for determination of salivary cotinine, cortisol, dehydroepiandrosterone and testosterone concentrations. Nihon Eiseigaku Zasshi 64:811–816

    Article  CAS  Google Scholar 

  45. Matchock RL, Dorn LD, Susman EJ (2007) Diurnal and seasonal cortisol, testosterone, and DHEA rhythms in boys and girls during puberty. Chronobiol Int 24:969–990

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Promotion and Mutual Aid Corporation for Private Schools of Japan, The Science Research Promotion Fund, a Grant-in-Aid for Basic Scientific Research (C, No. 22590048), and the Cosmetology Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kataoka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kataoka, H., Ehara, K., Yasuhara, R. et al. Simultaneous determination of testosterone, cortisol, and dehydroepiandrosterone in saliva by stable isotope dilution on-line in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 405, 331–340 (2013). https://doi.org/10.1007/s00216-012-6479-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6479-4

Keywords

Navigation