Skip to main content

Advertisement

Log in

Metallomics in drug development: characterization of a liposomal cisplatin drug formulation in human plasma by CE–ICP–MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A capillary electrophoresis inductively coupled plasma mass spectrometry method for separation of free cisplatin from liposome-encapsulated cisplatin and protein-bound cisplatin was developed. A liposomal formulation of cisplatin based on PEGylated liposomes was used as model drug formulation. The effect of human plasma matrix on the analysis of liposome-encapsulated cisplatin and intact cisplatin was studied. The presence of 1 % of dextran and 4 mM of sodium dodecyl sulfate in HEPES buffer was demonstrated to be effective in improving the separation of liposomes and cisplatin bound to proteins in plasma. A detection limit of 41 ng/mL of platinum and a precision of 2.1 % (for 10 μg/mL of cisplatin standard) were obtained. Simultaneous measurements of phosphorous and platinum allows the simultaneous monitoring of the liposomes, liposome-encapsulated cisplatin, free cisplatin and cisplatin bound to plasma constituents in plasma samples. It was demonstrated that this approach is suitable for studies of the stability of liposome formulations as leakage of active drug from the liposomes and subsequent binding to biomolecules in plasma can be monitored. This methodology has not been reported before and will improve characterization of liposomal drugs during drug development and in studies on kinetics.

A method for distinguishing free cisplatin from liposome-encapsulated and protein-bound platinum in human plasma allows for studies of stability and kinetics of new drug formulations during drug development

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5–14

    Article  CAS  Google Scholar 

  2. Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130:442–465

    Article  CAS  Google Scholar 

  3. Meermann B, Sperling M (2012) Hyphenated techniques as tools for speciation analysis of metal-based pharmaceuticals: developments and applications. Anal Bioanal Chem 403:1501–1522

    Article  CAS  Google Scholar 

  4. Wang M, Feng W, Lu W, Li B, Wang B, Zhu M, Wang Y, Yuan H, Zhao Y, Chai Z (2007) Quantitative analysis of proteins via sulfur determination by HPLC coupled to isotope dilution ICPMS with a hexapole collision cell. Anal Chem 79:9128–9134

    Article  CAS  Google Scholar 

  5. Siethoff C, Feldmann I, Jakubowski N, Linscheid M (1999) Quantitative determination of DNA adducts using liquid chromatography/electrospray ionization mass spectrometry and liquid chromatography/high-resolution inductively coupled plasma mass spectrometry. J Mass Spectrom 34:421–426

    Article  CAS  Google Scholar 

  6. Profrock D, Leonhard P, Prange A (2003) Determination of phosphorus in phosphorylated deoxyribonucleotides using capillary electrophoresis and high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry with an octopole reaction cell. J Anal At Spectrom 18:708–713

    Article  Google Scholar 

  7. Bytzek AK, Hartinger CG (2012) Capillary electrophoretic methods in the development of metal-based therapeutics and diagnostics: new methodology and applications. Electrophoresis 33:622–634

    Article  CAS  Google Scholar 

  8. Albert A, Brauckmann C, Blaske F, Sperling M, Engelhard C, Karst U (2012) Speciation analysis of the antirheumatic agent Auranofin and its thiol adducts by LC/ESI-MS and LC/ICP-MS. J Anal At Spectrom 27:975–981

    Article  CAS  Google Scholar 

  9. Groessl M, Hartinger CG, Dyson PJ, Keppler BK (2008) CZE-ICP-MS as a tool for studying the hydrolysis of ruthenium anticancer drug candidates and their reactivity towards the DNA model compound dGMP. J Inorg Biochem 102:1060–1065

    Article  CAS  Google Scholar 

  10. Jahn S, Lohmann W, Bomke S, Baumann A, Karst U (2012) A ferrocene-based reagent for the conjugation and quantification of reactive metabolites. Anal Bioanal Chem 402:461–471

    Article  CAS  Google Scholar 

  11. Gammelgaard B, Packert Jensen B (2007) Application of inductively coupled plasma mass spectrometry in drug metabolism studies. J Anal At Spectrom 22:235–249

    Article  CAS  Google Scholar 

  12. Koellensperger G, Groeger M, Zinkl D, Petzelbauer P, Hann S (2009) Quantification of elemental labeled peptides in cellular uptake studies. J Anal At Spectrom 24:97–102

    Article  CAS  Google Scholar 

  13. Prange A, Profrock D (2008) Chemical labels and natural element tags for the quantitative analysis of bio-molecules. J Anal At Spectrom 23:432–459

    Article  CAS  Google Scholar 

  14. Ranson M, Howell A, Cheeseman S, Margison J (1996) Liposomal drug delivery. Cancer Treat Rev 22:365–379

    Article  CAS  Google Scholar 

  15. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198

    Article  CAS  Google Scholar 

  16. Florea A-M, Büsselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3:1351–1371

    Article  CAS  Google Scholar 

  17. Rajeswaran A, Trojan A, Burnand B, Giannelli M (2008) Efficacy and side effects of cisplatin- and carboplatin-based doublet chemotherapeutic regimens versus non-platinum-based doublet chemotherapeutic regimens as first line treatment of metastatic non-small cell lung carcinoma: a systematic review of randomized controlled trials. Lung Cancer 59:1–11

    Article  Google Scholar 

  18. Maurer N, Fenske DB, Cullis PR (2001) Developments in liposomal drug delivery systems. Expert Opin Biol Ther 1:923–947

    Article  CAS  Google Scholar 

  19. Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44:68–97

    Article  CAS  Google Scholar 

  20. Metselaar JM, Mastrobattista E, Storm G (2002) Liposomes for intravenous drug targeting: design and applications. Mini Rev Med Chem 2:319–329

    Article  CAS  Google Scholar 

  21. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  Google Scholar 

  22. Falta T, Koellensperger G, Standler A, Buchberger W, Mader RM, Hann S (2009) Quantification of cisplatin, carboplatin and oxaliplatin in spiked human plasma samples by ICP-SFMS and hydrophilic interaction liquid chromatography (HILIC) combined with ICP-MS detection. J Anal At Spectrom 24:1336–1342

    Article  CAS  Google Scholar 

  23. Groessl M, Terenghi M, Casini A, Elviri L, Lobinski R, Dyson PJ (2010) Reactivity of anticancer metallodrugs with serum proteins: new insights from size exclusion chromatography-ICP-MS and ESI-MS. J Anal At Spectrom 25:305–313

    Article  CAS  Google Scholar 

  24. Speelmans G, Sips WH, Grisel RJ, Staffhorst RW, Fichtinger-Schepman AM, Reedijk J, deKruijff B (1996) The interaction of the anti-cancer drug cisplatin with phospholipids is specific for negatively charged phospholipids and takes place at low chloride ion concentration. Biochim Biophys Acta 1283:60–66

    Article  Google Scholar 

  25. Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliver Rev 60:876–885

    Article  CAS  Google Scholar 

  26. Moller C, Tastesen HS, Gammelgaard B, Lambert IH, Sturup S (2010) Stability, accumulation and cytotoxicity of an albumin-cisplatin adduct. Metallomics 2:811–818

    Article  Google Scholar 

  27. Hann S, Falta T, Boeck K, Sulyok M, Koellensperger G (2010) On-line fast column switching SEC × IC separation combined with ICP-MS detection for mapping metallodrug–biomolecule interaction. J Anal At Spectrom 25:861–866

    Article  CAS  Google Scholar 

  28. Timerbaev AR, Aleksenko SS, Polec-Pawlak K, Ruzik R, Semenova O, Hartinger CG, Oszwaldowski S, Galanski M, Jarosz M, Keppler BK (2004) Platinum metallodrug-protein binding studies by capillary electrophoresis-inductively coupled plasma-mass spectrometry: characterization of interactions between Pt(II) complexes and human serum albumin. Electrophoresis 25:1988–1995

    Article  CAS  Google Scholar 

  29. Szpunar J, Makarov A, Pieper T, Keppler BK, Lobinski R (1999) Investigation of metallodrug-protein interactions by size-exclusion chromatography coupled with inductively coupled plasma mass spectrometry (ICP-MS). Anal Chim Acta 387:135–144

    Article  CAS  Google Scholar 

  30. Michalke B (2010) Platinum speciation used for elucidating activation of Pt-containing anti-cancer drugs. J Trace Elem Med Biol 24:69–77

    Article  CAS  Google Scholar 

  31. Timerbaev AR, Pawlak K, Aleksenko SS, Foteeva LS, Matczuk M, Jarosz M (2012) Advances of CE-ICP-MS in speciation analysis related to metalloproteomics of anticancer drugs. Talanta. doi:10.1016/j.talanta.2012.07.031

  32. Nguyen TTTN, Sturup S, Ostergaard J, Franzen U, Gammelgaard B (2011) Simultaneous measurement of phosphorus and platinum by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICPMS) using xenon as reactive collision gas for characterization of platinum drug liposomes. J Anal At Spectrom 26:1466–1473

    Article  CAS  Google Scholar 

  33. Nguyen T, Ostergaard J, Sturup S, Gammelgaard B (2012) Investigation of a liposomal oxaliplatin drug formulation by capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry (CE-ICP-MS). Anal Bioanal Chem 402:2131–2139

    Article  CAS  Google Scholar 

  34. Vikbjerg AF, Petersen SA [DK], Melander F [SE], Henriksen JR [DK], Joergensen K [DK] (2009) Liposomes for drug delivery and methods for preparation thereof. WO2009EP56297 20090525 [WO2009141450 (A2)]. Ref Type: Patent

  35. Franzen U, Nguyen TTTN, Vermehren C, Gammelgaard B, Ostergaard J (2011) Characterization of a liposome-based formulation of oxaliplatin using capillary electrophoresis: encapsulation and leakage. J Pharm Biomed 55:16–22

    Article  CAS  Google Scholar 

  36. Hann S, Koellensperger G, Stefanka Z, Stingeder G, Furhacker M, Buchberger W, Mader RM (2003) Application of HPLC-ICP-MS to speciation of cisplatin and its degradation products in water containing different chloride concentrations and in human urine. J Anal At Spectrom 18:1391–1395

    Article  CAS  Google Scholar 

  37. Østergaard J, Schou C, Larsen C, Heegaard NHH (2002) Effect of dextran as a run buffer additive in drug-protein binding studies using capillary electrophoresis frontal analysis. Anal Chem 75:207–214

    Article  Google Scholar 

  38. Khan AM, Shah SS (2008) Determination of critical micelle concentration (cmc) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its cmc using ORIGIN software. J Chem Soc Pak 30:186–191

    CAS  Google Scholar 

  39. Michalke B, Schramel P (1997) Coupling of capillary electrophoresis with ICP-MS for speciation investigations. Fresenius J Anal Chem 357:594–599

    Article  CAS  Google Scholar 

  40. Xu X, Khan MA, Burgess DJ (2012) A two-stage reverse dialysis in vitro dissolution testing method for passive targeted liposomes. Int J Pharm 426:211–218

    Article  CAS  Google Scholar 

  41. Boyd BJ (2003) Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm 260:239–247

    Article  CAS  Google Scholar 

  42. Washington C (1989) Evaluation of non-sink dialysis methods for the measurement of drug release from colloids: effects of drug partition. Int J Pharm 56:71–74

    Article  CAS  Google Scholar 

  43. de Jonge MJ, Slingerland M, Loos WJ, Wiemer EAC, Burger H, Mathijssen RHJ, Kroep JR, den Hollander MAG, van der Biessen D, Lam MH, Verweij J, Gelderblom H (2010) Early cessation of the clinical development of LiPlaCis, a liposomal cisplatin formulation. Eur J Cancer 46:3016–3021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Gammelgaard.

Additional information

Published in the topical collection Metallomics with guest editors Uwe Karst and Michael Sperling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.T.T.N., Østergaard, J., Stürup, S. et al. Metallomics in drug development: characterization of a liposomal cisplatin drug formulation in human plasma by CE–ICP–MS. Anal Bioanal Chem 405, 1845–1854 (2013). https://doi.org/10.1007/s00216-012-6355-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6355-2

Keywords

Navigation