Skip to main content
Log in

Novel sensor based on carbon paste/Nafion® modified with gold nanoparticles for the determination of glutathione

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Several problems for the direct electrochemical oxidation of reduced glutathione (GSH) challenge the usage of electroanalytical techniques for its determination. In this work, the electrochemical oxidation of GSH catalyzed by gold nanoparticles electrodeposited on Nafion modified carbon paste electrode in 0.04 mol L−1 universal buffer solution (pH 7.4) is proved successful. The effect of various experimental parameters including pH, scan rate and stability on the voltammetric response of GSH was investigated. At the optimum conditions, the concentration of GSH was determined using differential pulse voltammetry (DPV) in two concentration ranges: 0.1 × 10−7 to 1.6 × 10−5 mol L−1 and 2.0 × 10−5 to 2.0 × 10−4 mol L−1 with correlation coefficients 0.9988, 0.9949 and the limit of detections (LOD) are 3.9 × 10−9 mol L−1 and 8.2 × 10−8 mol L−1, respectively, which confirmed the sensitivity of the electrode. The high sensitivity, wide linear range, good stability and reproducibility, and the minimal surface fouling make this modified electrode useful for the determination of spiked GSH in urine samples and in tablet with excellent recovery results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

 
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Black M (1984) Acetaminophen hepatotoxicity. Ann Rev Med 35:577–593

    Article  CAS  Google Scholar 

  2. Lock J, Davis J (2002) The determination of disulphide species within physiological fluids. Trends Anal Chem 21(12):807

    Article  CAS  Google Scholar 

  3. Halliwell B, Gutteridge JMC (2007) Free Radicals in Biology and Medicine, 4th edn. Oxford University Press, Oxford, pp 114–115

    Google Scholar 

  4. Rawn JD (1983) in: Harper and Row (eds) Biochemistry, New York, p. 657

  5. Chen J, He Z, Liu H, Cha C (2006) Electrochemical determination of reduced glutathione (GSH) by applying the powder microelectrode technique. J Electroanal Chem 588(2):324–330

    Article  CAS  Google Scholar 

  6. Penninckx M (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol 26(9–10):737–742

    Article  CAS  Google Scholar 

  7. Srinivas B, Michael H, Deepinder K, Subramanian R, Julie KA (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64(5–6):1037–1048

    Google Scholar 

  8. Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TJ, Jones DP (1999) Glutathione redox potential in response to differentiation and enzyme inducers. Free Rad Biol Med 27(11–12):1208–1218

    Article  CAS  Google Scholar 

  9. Lomaestro BM, Malone M (1995) Glutathione in health and disease: pharmacotherapeutic issues. Ann Pharmacother 29:1263–1273

    CAS  Google Scholar 

  10. Sudeep PK, Joseph STS, Thomas KG (2005) Selective Detection of Cysteine and Glutathione Using Gold Nanorods. J Am Chem Soc 127(18):6516–6517

    Article  CAS  Google Scholar 

  11. Cereser C, Guichard J, Drai J, Bannier E, Garcia I, Boget S, Parvaz P, Revol A (2001) Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. J Chromatogr B: Biomed Sci Appl 752(1):123–132

    Article  CAS  Google Scholar 

  12. Zhang W, Wan F, Zhu W, Xu H, Ye X, Cheng R, Jin LT (2005) Determination of glutathione and glutathione disulfide in hepatocytes by liquid chromatography with an electrode modified with functionalized carbon nanotubes. J Chromatogr B 818(2):227–232

    Article  CAS  Google Scholar 

  13. Shen Z, Wang H, Liang SC, Zhang ZM, Zhang HS (2002) Spectrofluorimetric determination of reduced glutathione in human blood using N-[p-(2-benzothiazolyl)phenyl]maleimide. Anal Lett 35(14):2269–2278

    Article  CAS  Google Scholar 

  14. Chen XP, Cross RF, Clark AG, Baker WL (1999) Analysis of reduced glutathione using a reaction with 2,4'-dichloro-1-(naphthyl-4-ethoxy)-s-triazine (EDTN). Mikrochim Acta 130(4):225–231

    Article  CAS  Google Scholar 

  15. Besada A, Tadros NB, Gawargious YA (1989) Copper(II)-neocuproine as color reagent for some biologically active thiols: spectrophotometric determination of cysteine, penicillamine, glutathione, and 6-mercaptopurine. Mikrochim Acta 3(1–2):143–146

    Article  CAS  Google Scholar 

  16. Raggi MA, Nobile L, Giovannini AG (1991) Spectrophotometric determination of glutathione and of its oxidation product in pharmaceutical dosage forms. J Pharm Biomed Anal 9(10–12):1037–1040

    Article  CAS  Google Scholar 

  17. Pacsial-Ong EJ, McCarley RL, Wang WH, Strongin RM (2006) Electrochemical detection of glutathione using redox indicators. Anal Chem 78(21):7577–7581

    Article  CAS  Google Scholar 

  18. Vandeberg PJ, Johnson DC (1993) Pulsed electrochemical detection of cysteine, cystine, methionine, and glutathione at gold electrodes following their separation by liquid chromatography. Anal Biochem 65(20):2713–2718

    CAS  Google Scholar 

  19. Jin WR, Dong Q, Ye XY, Yu DQ (2000) Assay of Glutathione in Individual Mouse Peritoneal Macrophages by Capillary Zone Electrophoresis with Electrochemical Detection. Anal Biochem 285(2):255–259

    Article  CAS  Google Scholar 

  20. Jin WR, Li XJ, Gao N (2003) Simultaneous determination of tryptophan and glutathione in individual rat hepatocytes by capillary zone electrophoresis with electrochemical detection at a carbon fiber bundle-Au/Hg dual electrode. Anal Chem 75(15):3859–3864

    Article  CAS  Google Scholar 

  21. Ling BL, Baeyens WRG, Dewaele C, Del Castillo B (1992) Packed capillary liquid chromatography coupled to fluorescence detection: Application to human blood samples for the determination of glutathione. J Pharmaceut Biomed 10(10–12):985–988

    Article  CAS  Google Scholar 

  22. Janeš L, Lisjak K, Vanzo A (2010) Determination of glutathione content in grape juice and wine by high-performance liquid chromatography with fluorescence detection. Anal Chim Acta 674(2):239–242

    Article  Google Scholar 

  23. Cai HH, Wang H, Wang J, Wei W, Yang PH, Cai J (2012) Naked eye detection of glutathione in living cells using rhodamine B-functionalized gold nanoparticles coupled with FRET. Dye Pigment 92(1):778–782

    Article  CAS  Google Scholar 

  24. Głowacki R, Bald E (2009) Fully automated method for simultaneous determination of total cysteine, cysteinylglycine, glutathione and homocysteine in plasma by HPLC with UV absorbance detection. J Chromatogr B 877(28):3400–3404

    Article  Google Scholar 

  25. Burns SA, Hong YJ, Mitchell AE (2004) Direct liquid chromatography–mass spectrometry method for the detection of glutathione S-transferase isozymes and investigation of their expression in response to dietary flavone. J Chromatogr B 809(2):331–337

    CAS  Google Scholar 

  26. Atta NF, Galal A, Abu-Attia FM, Azab SM (2011) Simultaneous determination of paracetamol and neurotransmitters in biological fluids using a carbon paste sensor modified with gold nanoparticles. J Mater Chem 21:13015–13024

    Article  CAS  Google Scholar 

  27. Atta NF, El-Kady MF (2010) Novel poly(3-methylthiophene)/Pd, Pt nanoparticle sensor: Synthesis, characterization and its application to the simultaneous analysis of dopamine and ascorbic acid in biological fluids. Sens Actuators B: Chem 145(1):299–310

    Article  Google Scholar 

  28. Atta NF, El-Kady MF, Galal A (2009) Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sens Actuators B-Chem 14(2):566–574

    Article  Google Scholar 

  29. Atta NF, Abdel-Mageed AM (2009) Smart electrochemical sensor for some neurotransmitters using imprinted sol–gel films. Talanta 80(2):511–518

    Article  CAS  Google Scholar 

  30. Atta NF, Galal A, Ahmed RA (2011) Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate. Bioelectrochemistry 80(2):132–141

    Article  CAS  Google Scholar 

  31. Calvo-Marzal P, Chumbimuni-Torres KY, Höehr NF, Kubota LT (2006) Determination of glutathione in hemolysed erythrocyte with amperometric sensor based on TTF-TCNQ. Clin Chim Acta 371(1–2):152–158

    Article  CAS  Google Scholar 

  32. Salimi A, Hallaj R (2005) Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: applications to amperometric detection of thiocytosine, l-cysteine and glutathione. Talanta 66(4):967–975

    Article  CAS  Google Scholar 

  33. Compagnone D, Federici G, Scarciglia L (1933) Amperometric glutathione electrodes. Biosens Biolelectron 8(5):257–263

    Article  Google Scholar 

  34. Compagnone D, Federici G, Scarciglia L, Palleschi G (1994) Flow-through analysis of glutathione in human erythrocytes with an amperometric biosensor. Anal Lett 27(1):15–27

    Article  CAS  Google Scholar 

  35. Zhang S, Sun WL, Zhang W, Qi WY, Jin LT, Yamamoto K, Tao S, Jin JY (1999) Determination of thiocompounds by liquid chromatography with amperometric detection at a Nafion/indium hexacyanoferrate film modified electrode. Anal Chim Acta 386(1–2):21–30

    Article  CAS  Google Scholar 

  36. Salimi A, Pourbeyram S (2003) Renewable sol–gel carbon ceramic electrodes modified with a Ru-complex for the amperometric detection of L-Cysteine and glutathione. Talanta 60(1):205–214

    Article  CAS  Google Scholar 

  37. Filanovsky B (1999) Electrochemical response of new carbon electrodes bulk modified with cobalt phthalocyanine to some thiols in the presence of heptane or human urine. Anal Chim Acta 394(1):91–100

    Article  CAS  Google Scholar 

  38. Banica FG, Fogg AG, Moreira JC (1995) Catalytic cathodic stripping voltammetry of oxidized glutathione at a hanging mercury drop electrode in the presence of nickel ion. Talanta 42(2):227–234

    Article  CAS  Google Scholar 

  39. Oshea TJ, Lunte SM (1993) Selective detection of free thiols by capillary electrophoresis-electrochemistry using a gold/mercury amalgam microelectrode. Anal Chem 65:247–250

    Article  CAS  Google Scholar 

  40. Owens GS, LaCourse WR (1996) Pulsed electrochemical detection of sulfur-containing compounds following microbore liquid chromatography. Current Sep 14:82–88

    CAS  Google Scholar 

  41. Miao P, Liu L, Nie Y, Li G (2009) An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides. Biosens Bioelectron 24(11):3347–3351

    Article  CAS  Google Scholar 

  42. Raoof JB, Ojani R, Baghayeri M (2009) Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sensor Actuat B-Chem 143(1):261–269

    Article  Google Scholar 

  43. Lima PR, Santos WJR, Oliveira AB, Goulart MOF, Kubota LT (2008) Electrocatalytic activity of 4-nitrophthalonitrile-modified electrode for the l-glutathione detection. J Pharmaceut Biomed 47(4–5):758–764

    Article  CAS  Google Scholar 

  44. Atta NF, Galal A, Abu-Attia FM, Azab SM (2011) Characterization and electrochemical investigations of micellar/drug interactions. Electrochim Acta 56(5):2510–2517

    Article  CAS  Google Scholar 

  45. Atta NF, Galal A, Abu-Attia FM, Azab SM (2010) Carbon paste-gold nanoparticles sensor for the selective determination of dopamine in buffered solutions. J Electrochem Soc 157(9):116–123

    Article  Google Scholar 

  46. Shahrokhian S, Ghalkhani M (2006) Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine–nafion ion-pair as an electron mediator. Electrochim Acta 51(13):2599–2606

    Article  CAS  Google Scholar 

  47. Zuman P (1969) The Elucidation of Organic Electrode Processes. Academic Press, New York, p 21

    Google Scholar 

  48. Jiang X, Lin X (2005) Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal Chim Acta 537(1–2):145–151

    Article  CAS  Google Scholar 

  49. Zhou M, Ding J, Guo LP, Shang QK (2007) Electrochemical behavior of l-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal Chem 79(14):5328–5335

    Article  CAS  Google Scholar 

  50. Atta NF, Darwish SA, Khalil SE, Galal A (2007) Effect of surfactants on the voltammetric response and determination of an antihypertensive drug. Talanta 72(4):1438–1445

    Article  CAS  Google Scholar 

  51. Qijin W, Nianjun Y, Haili Z, Xinpin Z, Bin X (2001) Voltammetric behavior of vitamin B2 on the gold electrode modified with a self-assembled monolayer of l-cysteine and its application for the determination of vitamin B2 using linear sweep stripping voltammetry. Talanta 55(3):459–467

    Article  CAS  Google Scholar 

  52. Vasantha VS, Chen SM (2006) Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy) thiophene film modified electrodes. J Electroanal Chem 592(1):77–87

    Article  CAS  Google Scholar 

  53. Li J, Lin XQ (2007) Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal Chim Acta 596(2):222–230

    Article  CAS  Google Scholar 

  54. Nasri Z, Shams E (2009) Application of silica gel as an effective modifier for the voltammetric determination of dopamine in the presence of ascorbic acid and uric acid. Electrochim Acta 54(28):7416–7421

    Article  CAS  Google Scholar 

  55. Dawson RMC (1959) Data for Biochemical Research. Clarendon Press, Oxford

    Google Scholar 

  56. Abiman P, Wildgoose GG, Compton RG (2007) Electroanalytical exploitation of nitroso phenyl modified carbon-thiol interactions: Application to the low voltage determination of thiols. Electroanalysis 19(4):437–444

    Article  CAS  Google Scholar 

  57. Xu F, Wang L, Gao M, Jin J, Jin J (2002) Amperometric determination of glutathione and cysteine on a Pd-IrO2 modified electrode with high performance liquid chromatography in rat brain microdialysate. Anal Bioanal Chem 372(7–8):791–794

    Article  CAS  Google Scholar 

  58. Nekrassova O, Lawrence NS, Compton RG (2003) Electrochemically initiated catalytic oxidation of 5-thio-2-nitrobenzoic acid (TNBA) in the presence of thiols at a boron doped diamond electrode: Implications for total thiol detection. Electroanalysis 21(15):1655–1660

    Article  Google Scholar 

  59. Chen G, Zhang LY (2004) Wang J (2004) Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols. Talanta 64(4):1018–1023

    Article  CAS  Google Scholar 

  60. Gong KP, Zhang MN, Yan YM, Su L, Mao LQ, Xiong SX, Chen Y (2004) Sol − gel-derived ceramic − carbon nanotube nanocomposite electrodes: Tunable electrode dimension and potential electrochemical applications. Anal Chem 76:6500–6505

    Article  CAS  Google Scholar 

  61. Wang HS, Zhang AM, Cui H, Liu DJ, Liu RM (2000) Adsorptive stripping voltammetric determination of erythromycin at a pretreated glassy carbon electrode. Microchem J 64(1):67–71

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to express their gratitude to the University of Cairo (Office of Vice President for Graduate Studies and Research) for providing partial financial support through “The Young Researchers’ Program.” We would like to acknowledge the financial support by the National Organization for Drug Control and Research (NODCAR, Egypt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Galal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 674 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atta, N.F., Galal, A. & Azab, S.M. Novel sensor based on carbon paste/Nafion® modified with gold nanoparticles for the determination of glutathione. Anal Bioanal Chem 404, 1661–1672 (2012). https://doi.org/10.1007/s00216-012-6276-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6276-0

Keyword

Navigation