Skip to main content
Log in

Electrochemical sensor based on graphene and tungsten disulfide nanoparticles for determination of noscapine and papaverine

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this research, for the first time, an electrochemical sensor has been introduced by incorporating synthesized graphene nanoparticles (GrNPs) and tungsten disulfide nanoparticles (WS2NPs) into a carbon paste (CP) matrix. This sensor was used for the simultaneous measurement of noscapine (NOS) and papaverine (PAP) as two important alkaloids in opium. The properties of the synthesized nanoparticles were examined by scanning electron microscopy, elemental analysis, and X-ray diffraction. The electrochemical behavior of the modified electrode in aqueous solutions was studied by chronoamperometry, cyclic voltammetry, impedance, and differential pulse voltammetry techniques. A significant enhancement in the peak current response of NOS and PAP was observed at the graphene nanoparticles and tungsten disulfide nanoparticle–modified carbon paste electrode (GrNPs/WS2NPs/CPE) compared to the bare CPE. Also, using differential pulse voltammetry (DPV) method, linear range 5 to 1000 μM and limit of detection (LOD) (S/N = 3.0) 0.5062 μM and 1.0793 μM were obtained for NOS and PAP, respectively. Real-sample analysis results showed a recovery range 93.0–95.0% and 93.0–95.4 for NOS and PAP, respectively, that confirm a powerful ability of GrNPs/WS2NPs/CPE for determination of NOS and PAP in urine and industrial effluent samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu H, Su D, Wang G, Qiao SZ (2012) WS2 anode material with superior electrochemical performance for lithium ion batteries. J Mater Chem 22:17437–17440. https://doi.org/10.1039/C2JM33992G

    Article  CAS  Google Scholar 

  2. Yang G, Gong H, Liu T, Sun X, Cheng L, Liu Z (2015) Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 60:62–71. https://doi.org/10.1016/j.biomaterials.2015.04.053

    Article  CAS  PubMed  Google Scholar 

  3. Li S, Jiang Z, Hou X, Xu J, Xu M, Yu X, Ma ZF, Yang J, Yuan X (2019) A relative study on sonochemically synthesized mesoporous WS2 nanorods & hydrothermally synthesized WS2 nanoballs towards electrochemical sensing of psychoactive drug (Clonazepam). Ultrason Sonochem 54:79–89. https://doi.org/10.1016/j.ultsonch.2019.02.012

    Article  CAS  Google Scholar 

  4. Li Y (2022) Metal sulfide as catalysts enabling fast polysulfide conversion for high electrochemical performance Li–S batteries. Ionics. https://doi.org/10.1007/s11581-022-04493-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Chen N, Du X, Zhang X (2021) Hierarchical sulfide nanoarrays as an efficient bifunctional electrocatalyst for overall water splitting. Ionics 27:2591–2602. https://doi.org/10.1007/s11581-021-04037-6

    Article  CAS  Google Scholar 

  6. Mayorga-Martinez CC, Ambrosi A, Eng AYS, Sofer Z, Pumera M (2015) Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance. Electrochem Commun 56:24–28. https://doi.org/10.1016/j.elecom.2015.03.017

    Article  CAS  Google Scholar 

  7. Yang H, Zhao F, Cao X, Liu Q, Zhang X, Zhang X (2020) Enhanced photoelectrocatalytic activity of cobalt sulfide modified with porphyrin as a noble-metal-free photoelectroncatalyst towards methanol oxidation under visible-light. J Taiwan Inst Chem Eng 116:169–177. https://doi.org/10.1016/j.jtice.2020.11.017

    Article  CAS  Google Scholar 

  8. Gupta R, Valappil MO, Sakthivel A, Mathur A (2020) Tungsten disulfide quantum dots based disposable paper based lab on genochip for specific meningitis DNA detection. J Electrochem Soc 167:107501. https://doi.org/10.1149/1945-7111/ab8fda

    Article  CAS  Google Scholar 

  9. Kozawa D, Carvalho A, Verzhbitskiy I, Giustiniano F, Miyauchi Y, Mouri S, Castro Neto A, Matsuda K, Eda G (2016) Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett 16:4087–4093. https://doi.org/10.1021/acs.nanolett.6b00801

    Article  CAS  PubMed  Google Scholar 

  10. Lei W, Xiao JL, Liu HP, Jia QL, Zhang HJ (2020) Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten 2:217–239. https://doi.org/10.1007/s42864-020-00054-6

    Article  Google Scholar 

  11. Yang J, Voiry D, Ahn SJ, Kang D, Kim AY, Chhowalla M, Shin HS (2013) Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew Chemie Int Ed 52:13751–13754. https://doi.org/10.1002/anie.201307475

    Article  CAS  Google Scholar 

  12. Foroughi MM, Jahani S, Aramesh-Boroujeni Z, Rostaminasab Dolatabad M, Shahbazkhani K (2021) Synthesis of 3D cubic of Eu3+/Cu2O with clover-like faces nanostructures and their application as an electrochemical sensor for determination of antiretroviral drug nevirapine. Ceramics Int 47:19727–19736. https://doi.org/10.1016/j.ceramint.2021.03.311

    Article  CAS  Google Scholar 

  13. Setoudeh N, Jahani S, Kazemipour M, Foroughi MM, HassaniNadiki H (2020) Zeolitic imidazolate frameworks and cobalt-tannic acid nanocomposite modified carbon paste electrode for simultaneous determination of dopamine, uric acid, acetaminophen and tryptophan: Investigation of kinetic parameters of surface electrode and its analytical performance. J Electroanal Chem 863:114045. https://doi.org/10.1016/j.jelechem.2020.114045

    Article  CAS  Google Scholar 

  14. Sheibani N, Kazemipour M, Jahani S, Foroughi MM (2019) A novel highly sensitive thebaine sensor based on MWCNT and dandelion-like Co3O4 nanoflowers fabricated via solvothermal synthesis. Microchem J 149:103980. https://doi.org/10.1016/j.microc.2019.103980

    Article  CAS  Google Scholar 

  15. Arefi Nia N, Foroughi MM, Jahani S (2021) Simultaneous determination of theobromine, theophylline, and caffeine using a modified electrode with petal-like MnO2 nanostructure. Talanta 222:121563. https://doi.org/10.1016/j.talanta.2020.121563

    Article  CAS  Google Scholar 

  16. Jijie R, Kahlouche K, Barras A, Yamakawa N, Bouckaert J, Gharbi T, Szunerits S, Boukherroub R (2018) Reduced graphene oxide/polyethylenimine based immunosensor for the selective and sensitive electrochemical detection of uropathogenic Escherichia coli. Sens Actuators B Chem 260:255–263. https://doi.org/10.1016/j.snb.2017.12.169

    Article  CAS  Google Scholar 

  17. Wang X, Chen Y, Zheng B, Qi F, He J, Li P (2016) Few-layered WSe2 nanoflowers anchored on graphene nanosheets: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochim Acta 222:1293–1299. https://doi.org/10.1016/j.electacta.2016.11.104

    Article  CAS  Google Scholar 

  18. Foroughi MM, Ranjbar M (2017) Microwave-assisted synthesis and characterization photoluminescence properties: a fast, efficient route to produce ZnO/GrO nanocrystalline. J Mater Sci: Mater Electron 28:1359–1363. https://doi.org/10.1007/s10854-016-5668-x

    Article  CAS  Google Scholar 

  19. Lim JY, Mubarak N, Abdullah E, Nizamuddin S, Khalid MJ (2018) Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-A review. J Ind Eng Chem 66:29–44. https://doi.org/10.1016/j.jiec.2018.05.028

    Article  CAS  Google Scholar 

  20. Li Y, Niu J, Xue T, Duan X, Tian Q, Wen Y, Lu X, Xu J, Lai L, Chang Y, Li Z, Zhao X, Chen Y (2020) Multifunctional porous nanohybrid based on graphene-like tungsten disulfide on poly(3,4-ethoxylenedioxythiophene) for supercapacitor and electrochemical nanosensing of quercetin. J Electrochem Soc 167:047512. https://doi.org/10.1149/1945-7111/ab721e

    Article  CAS  Google Scholar 

  21. Er-Chieh C, Cai-Wan CJ, Jia-Huei Z, Jen-Hsien H, Kuen-Chan L, Bo-Cheng H, Yu-Sheng H (2018) Microwave-assisted synthesis of TiO2/WS2 heterojunctions with enhanced photocatalytic activity. J Taiwan Inst Chem Eng 91:489–498. https://doi.org/10.1016/j.jtice.2018.05.025

    Article  CAS  Google Scholar 

  22. Shang X, Yan KL, Liu ZZ, Lu SS, Dong B, Chi JQ, Li X, Liu YR, Chai YM, Liu CG (2017) Oxidized carbon fiber supported vertical WS2 nanosheets arrays as efficient 3D nanostructure electrocatalyts for hydrogen evolution reaction. Appl Surf Sci 402:120–128. https://doi.org/10.1016/j.apsusc.2017.01.059

    Article  CAS  Google Scholar 

  23. Cao S, Liu T, Hussain S, Zeng W, Peng X, Pan F (2014) Hydrothermal synthesis of variety low dimensional WS2 nanostructures. Mater Lett 129:205–208. https://doi.org/10.1016/j.matlet.2014.05.013

    Article  CAS  Google Scholar 

  24. Latha M, Biswas S, Vatsala Rani J (2020) Application of WS2-G composite as cathode for rechargeable magnesium batteries. Ionics 26:3395–3404. https://doi.org/10.1007/s11581-020-03512-w

    Article  CAS  Google Scholar 

  25. Mehew JD, Unal S, Torres Alonso E, Jones GF, Fadhil Ramadhan S, Craciun MF, Russo S (2017) Fast and highly sensitive ionic-polymer-gated WS2-graphene photodetectors. Adv Mater 29:1700222. https://doi.org/10.1002/adma.201700222

    Article  CAS  Google Scholar 

  26. Chen SM, Umamaheswari R, Mani G, Chen TW, Ali MA, Fahad AH, Elshikh M, Farah MA (2018) Hierarchically structured CuFe2O4 ND@RGO composite for the detection of oxidative stress biomarker in biological fluids. Inorg Chem Front 5:944–950. https://doi.org/10.1039/C7QI00799J

    Article  CAS  Google Scholar 

  27. United Nations (1987) Recommended methods for testing opium. United Nations, New York

    Google Scholar 

  28. Gerald MC (1974) Pharmacology: an introduction to drug. Prentice-Hall, Englewood Cliffs, NJ

  29. Yan J, Mi JQ, He JT, Guo ZQ, Zhao M, Chang W (2005) Development of an indirect competitive ELISA for the determination of papaverine. Talanta 66:1005–1011. https://doi.org/10.1016/j.talanta.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  30. Mashkovskii MD (2002) Lekarstvennye sredstva (Pharmaceutical preparations), vol 1. Novaya Volna, Moscow

    Google Scholar 

  31. Han X, Lamshoft M, Grobe N, Ren X, Fist AJ, Kutchan TM, Spiteller M, Zenk MH (2010) The biosynthesis of papaverine proceeds via (S)-reticuline. Phytochemistry 71:1305–1312. https://doi.org/10.1016/j.phytochem.2010.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huizer H (1987) Analytical studies on illicit heroin. Pharm Weekbl 9:203–211. https://doi.org/10.1007/BF02029331

    Article  CAS  Google Scholar 

  33. Gough TA (1991) The examination of drugs in smuggling offences. In: Gough TA (ed) the analysis of drugs of abuse. John Wiley & Sons, Chichester, U.K., pp 511–566

    Google Scholar 

  34. Zhang S, Zhuang Y, Ju H (2004) Flow-injection chemiluminescence determination of papaverine using cerium(IV)-sulfite system. Anal Lett 37:143–155. https://doi.org/10.1081/AL-120027780

    Article  CAS  Google Scholar 

  35. Zhuang YF, Cai XL, Yu JS, Ju HX (2004) Flow injection chemiluminescence analysis for highly sensitive determination of noscapine. J Photoch Photobiol A 162:457–462. https://doi.org/10.1016/S1010-6030(03)00391-5

    Article  CAS  Google Scholar 

  36. Kasperek R (2008) Determination of diclofenac sodium and papaverine hydrochloride in tablets by HPLC method. Acta Pol Pharm Drug Res 65:403–408

    CAS  Google Scholar 

  37. Yin CH, Tang C, Wu XY (2003) HPLC determination of aminophylline, methoxyphenamine hydrochloride, noscapine and chlorphenamine maleate in compound dosage forms with an aqueous-organic mobile phase. J Pharm Biomed Anal 33:39–43. https://doi.org/10.1016/S0731-7085(03)00352-2

    Article  CAS  PubMed  Google Scholar 

  38. Tang Y, Luan J, Wang Q (2002) Determination of papaverine hydrochloride in skin and blood and the drug contents in pig skin. Acta Acad Med Sin 24:413–417

    CAS  Google Scholar 

  39. Ghasemi J, Niazi A, Ghorbani R (2006) Determination of trace amounts of lorazepam by adsorptive cathodic differential pulse stripping method in pharmaceutical formulations and biological fluids. Anal Lett 39:1159–1169. https://doi.org/10.1080/00032710600622126

    Article  CAS  Google Scholar 

  40. Foroughi MM, Jahani S, Rajaei M (2019) Facile fabrication of 3D dandelion-like cobalt oxide nanoflowers and its functionalization in the first electrochemical sensing of oxymorphone: evaluation of kinetic parameters at the surface electrode. J Electrochem Soc 166:B1300. https://doi.org/10.1149/2.0511914jes

    Article  CAS  Google Scholar 

  41. Fathabadi MV, Rafsanjani HH, Foroughi MM, Jahani S, Arefi Nia N (2020) Synthesis of magnetic ordered mesoporous carbons (OMC) as an electrochemical platform for ultrasensitive and simultaneous detection of thebaine and papaverine. J Electrochem Soc 167:027509. https://doi.org/10.1149/1945-7111/ab6446

    Article  CAS  Google Scholar 

  42. Tajik S, Taher MA, Beitollahi H (2013) First report for simultaneous determination of methyldopa and hydrochlorothiazide using a nanostructured based electrochemical sensor. J Electroanal Chem 704:137–144. https://doi.org/10.1016/j.jelechem.2013.07.008

    Article  CAS  Google Scholar 

  43. Chen TW, Rajaji U, Chen SM, Chinnapaiyan S, Ramalingam RJ (2019) Facile synthesis of mesoporous WS2 nanorods decorated N-doped RGO network modified electrode as portable electrochemical sensing platform for sensitive detection of toxic antibiotic in biological and pharmaceutical samples. Ultrason Sonochemistry 56:430–436. https://doi.org/10.1016/j.ultsonch.2019.04.008

    Article  CAS  Google Scholar 

  44. Wang Y, Li Y, Tang T, Lu J, L J, (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892. https://doi.org/10.1016/j.elecom.2009.02.013

    Article  CAS  Google Scholar 

  45. Wang Y, Jin Y, Pan E, Jia M (2018) Fe3O4 nanoparticle/grapheme aerogel composite with enhanced lithium storage performance. Appl Surf Sci 458:1035–1042. https://doi.org/10.1016/j.apsusc.2018.07.127

    Article  CAS  Google Scholar 

  46. Krishnamoorthy D, Prakasam A (2021) Graphene hybridized with tungsten disulfide (WS2) based heterojunctions photoanode materials for high performance dye sensitized solar Cell device (DSSCs) applications. J Clust Sci 32:621–630. https://doi.org/10.1007/s10876-020-01828-1

    Article  CAS  Google Scholar 

  47. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  48. Rezaei B, Heidarbeigy M, Ensafi AA, Dinari M (2015) Electrochemical determination of papaverine on Mg-Al layered double hydroxide/graphene oxide and CNT modified carbon paste electrode. IEEE Sens 16:3496–3503. https://doi.org/10.1109/JSEN.2016.2533429

    Article  Google Scholar 

  49. Varsha K, Sharma A, Kaur A, Madan J, Pandey RS, Jain UK, Chandra R (2017) Nanostructures for cancer therapy; micro and nano technologies, chapter 28: natural plant-derived anticancer drugs nanotherapeutics: a review on preclinical to clinical success. Elsevier 775

  50. Navaee A, Salimi A, Teymourian H (2012) Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens Bioelectron 31:205–211. https://doi.org/10.1016/j.bios.2011.10.018

    Article  CAS  PubMed  Google Scholar 

  51. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723. https://doi.org/10.1021/ac60210a007

    Article  CAS  Google Scholar 

  52. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393

  53. Rezaei B, Zare SZM (2008) Modified glassy carbon electrode with multiwall carbon nanotubes as a voltammetric sensor for determination of noscapine in biological and pharmaceutical samples. Sens Actuators B Chem 134:292–299. https://doi.org/10.1016/j.snb.2008.05.002

    Article  CAS  Google Scholar 

  54. Babaei A, Sohrabi M (2016) An electrospun alumina-borate oxide nanofiber and reduced graphene oxide composite modified carbon paste electrode as the electrochemical sensor for simultaneous determination of dopamine and noscapine. Anal Methods 8:6949–6958. https://doi.org/10.1039/C6AY01724J

    Article  CAS  Google Scholar 

  55. Ahammad A, Lee JJ, Rahman M (2009) Electrochemical sensors based on carbon nanotubes. Sensors 9:2289–2319. https://doi.org/10.3390/s90402289

    Article  CAS  Google Scholar 

  56. Sharifi S, Zarei E, Asghari A (2021) Surfactant assisted electrochemical determination of noscapine and papaverine by TiO2 nanoparticles/multi-walled carbon nanotubes modified carbon paste electrode. Russ J Electrochem 57:183–196. https://doi.org/10.1134/S1023193521020129

    Article  Google Scholar 

  57. Feng LJ, Zhang XH, Zhao DM, Wang SF (2011) Electrochemical studies of bovine serum albumin immobilization onto the poly-o-phenylenediamine and carbon-coated nickel composite film and its interaction with papaverine. Sens Actuators B Chem 152:88–93. https://doi.org/10.1016/j.snb.2010.09.031

    Article  CAS  Google Scholar 

  58. Ziyatdinova G, Samigullin A, Budnikov G (2007) Voltammetric determination of papaverine and drotaverine. J Anal Chem 62:773–776. https://doi.org/10.1134/S1061934807080138

    Article  CAS  Google Scholar 

  59. Kharitonov SV (2006) Electrochemical response characteristics and analytical application of papaverine ion-selective membrane electrodes. Anal lett 39:259–273. https://doi.org/10.1080/00032710500476912

    Article  CAS  Google Scholar 

  60. Eppelsheim C, Aubeck R, Hampp N, Bräuchle C (1991) Determination of ethaverine and papaverine using ion-selective electrodes. Analyst 116:1001–1003. https://doi.org/10.1039/AN9911601001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Zarei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Zarei, E. & Asghari, A. Electrochemical sensor based on graphene and tungsten disulfide nanoparticles for determination of noscapine and papaverine. Ionics 29, 1579–1591 (2023). https://doi.org/10.1007/s11581-023-04895-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04895-2

Keywords

Navigation