Skip to main content
Log in

Autoindicating optical properties of laccase as the base of an optical biosensor film for phenol determination

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the context of sustainable analytical chemistry, phenol has been determined through its enzymatic reaction with laccase. The method has been studied and optimized through the autoindicating optical properties of laccase both by intrinsic molecular absorption and fluorescence. The method shows a linear range from 9.79·10−6 to 7.50·10−4 M with a relative standard deviation of 1.07 %. The molecular absorption methodology has been implemented in a polyacrylamide film for the design of an autoindicating optical sensor. In order to increase the lifetime of the sensor, the reversibility study of the enzymatic reaction has proposed, as a novelty, the regeneration of laccase with an oxidase-type enzyme (glucose oxidase). The lifetime of the sensor film has improved from 15 to 30 measurements. The reaction mechanism has also been studied and confirmed by fluorescence and molecular absorption. The method leads to the determination of phenol in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tucker JL (2010) Green chemistry: cresting a summit toward sustainability. Org Process Res Dev 14(2):328–331

    Article  CAS  Google Scholar 

  2. Kidwai M (2006) Green chemistry trends toward sustainability. Pure Appl Chem 78(11):1983–1992

    Article  CAS  Google Scholar 

  3. Galban J, Andreu Y, Sierra JF, de Marcos S, Castillo JR (2001) Intrinsic fluorescence of enzymes and fluorescence of chemically modified enzymes for analytical purposes: a review. Luminescence 16(2):199–210

    Article  CAS  Google Scholar 

  4. Galbán J, Sanz V, Mateos E, Sanz-Vicente I, Delgado-Camón A, De Marcos S (2008) Reagentless optical biosensors for organic compounds based on auto-indicating proteins. Protein Pept Lett 15(8):772–778

    Article  Google Scholar 

  5. Sierra JF, Galban J, De Marcos S, Castillo JR (2000) Direct determination of glucose in serum by fluorimetry using a labeled enzyme. Anal Chim Acta 414(1–2):33–41

    Article  CAS  Google Scholar 

  6. Galban J, Sierra JF, Sebastian JML, de Marcos S, Castillo JR (2000) Direct fluorometric determination of total cholesterol in serum using derivatized cholesterol oxidase. Appl Spectrosc 54(8):1157–1162

    Article  CAS  Google Scholar 

  7. Galban J, Sanchez-Monreal O, Andreu Y, de Marcos S, Castillo JR (2004) Choline determination based on the intrinsic and the extrinsic (chemically modified) fluorescence of choline oxidase. Anal Biochem 334(2):207–215

    Article  CAS  Google Scholar 

  8. Sanz V, de Marcos S, Galban J (2007) Using blood hemoglobin for blood analysis. Analyst 132(1):59–66

    Article  CAS  Google Scholar 

  9. Sanz V, de Marcos S, Galban J (2007) Hydrogen peroxide and peracetic acid determination in waste water using a reversible reagentless biosensor. Anal Chim Acta 583(2):332–339

    Article  CAS  Google Scholar 

  10. Noble JE, Ganju P, Cass AEG (2003) Fluorescent peptide probes for high-throughput measurement of protein phosphatases. Anal Chem 75(9):2042–2047

    Article  CAS  Google Scholar 

  11. Li N, Cook L, Santos C, Cass CE, Mackey JR, Dovichi NJ (2002) Use of a small reporter cell-surface proteins by molecule to determine capillary electrophoresis and laser-induced fluorescence: use of 5-SAENTA-x8f for quantitation of the human equilibrative nucleoside transporter 1 protein. Anal Chem 74(11):2573–2577

    Article  CAS  Google Scholar 

  12. Tian Y, Cuneo MJ, Changela A, Hocker B, Beese LS, Hellinga HW (2007) Structure-based design of robust glucose biosensors using a Thermotoga maritima periplasmic glucose-binding protein. Protein Sci 16(10):2240–2250

    Article  CAS  Google Scholar 

  13. Layton CJ, Hellinga HW (2010) Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes. Biochemistry 49(51):10831–10841

    Article  CAS  Google Scholar 

  14. Sierra JF, Galban J, Castillo JR (1997) Determination of glucose in blood based on the intrinsic fluorescence of glucose oxidase. Anal Chem 69(8):1471–1476

    Article  CAS  Google Scholar 

  15. Trettnak W, Wolfbeis OS (1989) Fully reversible fibre-optic glucose biosensor based on the intrinsic fluorescence of glucose-oxidase. Anal Chim Acta 221(2):195–203

    Article  CAS  Google Scholar 

  16. Sierra JF, Galban J, de Marcos S, Castillo JR (1998) Fluorimetric-enzymatic determination of glucose based on labelled glucose oxidase. Anal Chim Acta 368(1–2):97–104

    Article  CAS  Google Scholar 

  17. D'Auria S, Herman P, Rossi M, Lakowicz JR (1999) The fluorescence emission of the apo-glucose oxidase from Aspergillus niger as probe to estimate glucose concentrations. Biochem Biophys Res Commun 263(2):550–553

    Article  Google Scholar 

  18. Tobler D, Siegrist J, Kazarian T, Madou M, Wang PH, Daunert S (2010) A novel genetically engineered biosensor for real-time in vivo glucose sensing. Diabetes 59:A136–A137

    Google Scholar 

  19. Date A, Pasini P, Sangal A, Daunert S (2010) Packaging sensing cells in spores for long-term preservation of sensors: a tool for biomedical and environmental analysis. Anal Chem 82(14):6098–6103

    Article  CAS  Google Scholar 

  20. Date A, Pasini P, Daunert S (2010) Fluorescent and bioluminescent cell-based sensors: strategies for their preservation. In: Belkin S, Gu MB (eds) Whole cell sensing systems i: reporter cells and devices, vol 117. Advances in biochemical engineering-biotechnology. Springer, Berlin, pp 57–75

    Google Scholar 

  21. Sanz V, de Marcos S, Castillo JR, Galban J (2005) Application of molecular absorption properties of horseradish peroxidase for self-indicating enzymatic interactions and analytical methods. J Am Chem Soc 127(3):1038–1048

    Article  CAS  Google Scholar 

  22. Galban J, Sanz V, de Marcos S (2010) Selective peracetic acid determination in the presence of hydrogen peroxide using a label free enzymatic method based on catalase. Anal Bioanal Chem 398(5):2117–2124

    Article  CAS  Google Scholar 

  23. Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35(28):55–55

    Google Scholar 

  24. Li KC, Xu F, Eriksson KEL (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65(6):2654–2660

    CAS  Google Scholar 

  25. Duran N, Rosa MA, D'Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol 31(7):907–931

    Article  CAS  Google Scholar 

  26. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24(5):219–226

    Article  CAS  Google Scholar 

  27. Zoppellaro G, Sakurai T, Huang HW (2001) A novel mixed valence form of Rhus vernicifera laccase and its reaction with dioxygen to give a peroxide intermediate bound to the trinuclear center. J Biochem 129(6):949–953

    Article  CAS  Google Scholar 

  28. Kulys J, Bratkovskaja I (2007) Antioxidants determination with laccase. Talanta 72(2):526–531

    Article  CAS  Google Scholar 

  29. Elsby R, Maggs JL, Ashby J, Park BK (2001) Comparison of the modulatory effects of human and rat liver microsomal metabolism on the estrogenicity of bisphenol A: implications for extrapolation to humans. J Pharmacol Exp Ther 297(1):103–113

    CAS  Google Scholar 

  30. Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, Thomas S, Thomas BF, Hassold TJ (2003) Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr Biol 13(7):546–553

    Article  CAS  Google Scholar 

  31. European Community “Urban Water Directive 91/271/EC” (1991)

  32. Kang KH, Dec J, Park H, Bollag JM (2002) Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid. Water Res 36(19):4907–4915

    Article  CAS  Google Scholar 

  33. Fiamegos YC, Nanos CG, Vervoort J, Stalikas CD (2004) Analytical procedure for the in-vial derivatization- extraction of phenolic acids and flavonoids in methanolic and aqueous plant extracts followed by gas chromatography with mass-selective detection. J Chromatogr A 1041(1–2):11–18

    CAS  Google Scholar 

  34. Odaci D, Timur S, Pazarlioglu N, Montereali MR, Vastarella W, Pilloton R, Telefoncu A (2007) Determination of phenolic acids using Trametes versicolor laccase. Talanta 71(1):312–317

    Article  CAS  Google Scholar 

  35. Montereali MR, Della Seta L, Vastarella W, Pilloton R (2010) A disposable laccase-tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J Mol Catal B: Enzym 64(3–4):189–194

    Article  CAS  Google Scholar 

  36. Gomes S, Rebelo MJF (2003) A new laccase biosensor for polyphenols determination. Sensors 3(6):166–175

    Article  CAS  Google Scholar 

  37. Kurniawati S, Nicell JA (2008) Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresour Technol 99(16):7825–7834

    Article  CAS  Google Scholar 

  38. Wynn RM, Sarkar HK, Holwerda RA, Knaff DB (1983) Fluorescence associated with the type-3 copper center of laccase. FEBS Lett 156(1):23–28

    Article  CAS  Google Scholar 

  39. Espin JC, Morales M, GarciaRuiz PA, Tudela J, GarciaCanovas F (1997) Improvement of a continuous spectrophotometric method for determining the monophenolase and diphenolase activities of mushroom polyphenol oxidase. J Agric Food Chem 45(4):1084–1090

    Article  CAS  Google Scholar 

  40. Sanz V, de Marcos S, Galban J (2007) Direct glucose determination in blood using a reagentless optical biosensor. Biosens Bioelectron 22(12):2876–2883

    Article  CAS  Google Scholar 

  41. Kobayashi S, Higashimura H (2003) Oxidative polymerization of phenols revisited. Prog Polym Sci 28(6):1015–1048

    Article  CAS  Google Scholar 

  42. Uchida H, Fukuda T, Miyamoto H, Kawabata T, Suzuki M, Uwajima T (2001) Polymerization of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 287(2):355–358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology (MICINN) of Spain within the project CTQ2008-06751-C02-01/BQU and by the LaCaixa-DGA GA-LC-36/2011 project which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. de Marcos.

Additional information

Published in the special paper collection Progress on Environmental and Bioanalysis in Spain with guest editors Alfredo Sanz-Medel and Elena Domínguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz, J., de Marcos, S. & Galbán, J. Autoindicating optical properties of laccase as the base of an optical biosensor film for phenol determination. Anal Bioanal Chem 404, 351–359 (2012). https://doi.org/10.1007/s00216-012-6061-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6061-0

Keywords

Navigation