Skip to main content
Log in

Insight of the optical property of laccase during polymerics formation for application in real-time biosensing

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As a kind of biofunctional material, laccases with superior intrinsic optical property are garnering substantial interest in enzyme-based optical biosensing due to their great potential use in the field of food, environment and industry. However, it is still unclear as to the variation mechanism of enzyme intrinsic optical property, and thus limits the application. For exploring the variation mechanism, the current study presents the optical characterization of Agaricus bisporus laccase and focus on real-time monitoring polymerics formation, both theoretically and experimentally, in order to lay a foundation for laccase-based optical biosensing application. According to bioinformatics analysis, the results show that the target laccase has conserved copper binding site, and the related amino acid residues possibly have positive effect on the florescence of Typ in this region. On the basis of experimental characterization, the results show that the enzyme displays an obvious absorption peak at approximately 400 nm (optimal pH 7.0), and the strongest fluorescence of enzyme centers at around the excitation wavelength of 280 nm and emission wavelength of 340 nm (optimal pH 6.0); organic ethanol serves as an active enhancer toward the absorbance of enzyme, especially the high concentration ethanol (50%) can achieve above twofold enhancement on the enzyme absorbance compared to that of the non-addition in the examined condition, while Cu2+ acts as a strong inhibitor for the enzyme fluorescence due to the above 95% inhibition. Overall, the work suggests that the stably increased absorbance and decreased fluorescence of enzyme can serve as dual standard for optical biosensing which will benefit in improving the flexibility and accuracy of sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 2
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kim J, Campbell AS, de Ávila BE-F, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37:389–406. https://doi.org/10.1038/s41587-019-0045-y

    Article  CAS  Google Scholar 

  2. Tittl A, Leitis A, Liu M et al (2018) Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360:1105. https://doi.org/10.1126/science.aas9768

    Article  CAS  Google Scholar 

  3. Wang Y, Chen Z-H (2019) Bioinformatics and enzymatics investigation of Trametes laccase for optical biosensing application. J Mater Sci 54:4970–4983. https://doi.org/10.1007/s10853-018-03187-9

    Article  CAS  Google Scholar 

  4. Zhou L, Zhou J, Lai W et al (2020) Irreversible accumulated SERS behavior of the molecule-linked silver and silver-doped titanium dioxide hybrid system. Nat Commun 11:1785. https://doi.org/10.1038/s41467-020-15484-6

    Article  CAS  Google Scholar 

  5. Chen Z-H, Liang L, Wang Y, Yang Y (2016) Spatial remote luminescence enhancement by a half-cylindrical Au groove. Journal of Materials Chemistry C 4:11321–11327. https://doi.org/10.1039/C6TC04074H

    Article  CAS  Google Scholar 

  6. Long F, Zhu A, Shi H (2013) Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 13:13928–13948. https://doi.org/10.3390/s131013928

    Article  CAS  Google Scholar 

  7. Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Mahmoudi T et al (2019) Dengue virus: a review on advances in detection and trends – from conventional methods to novel biosensors. Microchim Acta 186:329. https://doi.org/10.1007/s00604-019-3420-y

    Article  CAS  Google Scholar 

  8. Veronesi F, Tschon M, Visani A, Fini M (2019) Biosensors for real-time monitoring of physiological processes in the musculoskeletal system: a systematic review. J Cell Physiol 234:21504–21518. https://doi.org/10.1002/jcp.28753

    Article  CAS  Google Scholar 

  9. Hakulinen N, Kiiskinen L-L, Kruus K et al (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605. https://doi.org/10.1038/nsb823

    Article  CAS  Google Scholar 

  10. Miyazawa N, Tanaka M, Hakamada M, Mabuchi M (2017) Molecular dynamics study of laccase immobilized on self-assembled monolayer-modified Au. J Mater Sci 52:12848–12853. https://doi.org/10.1007/s10853-017-1392-z

    Article  CAS  Google Scholar 

  11. Bertrand T, Jolivalt C, Briozzo P et al (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333. https://doi.org/10.1021/bi0201318

    Article  CAS  Google Scholar 

  12. Jones SM, Solomon EI (2015) Electron transfer and reaction mechanism of laccases. Cell Mol Life Sci 72:869–883. https://doi.org/10.1007/s00018-014-1826-6

    Article  CAS  Google Scholar 

  13. dos Santos TC, dos Santos Reis N, Silva TP, Machado FP, Ferereira Bonomo RC, Franco M (2016) Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by Aspergillus niger. Food Sci Biotechnol 25:205–211. https://doi.org/10.1007/s10068-016-0031-9

    Article  CAS  Google Scholar 

  14. Xie T, Liu Z, Wang G (2020) Structural basis for monolignol oxidation by a maize laccase. Nat Plants 6:231–237. https://doi.org/10.1038/s41477-020-0595-5

    Article  CAS  Google Scholar 

  15. Carvalho T, Brito A, Bonomo R et al (2017) Statistical optimization of culture conditions and characterization for ligninolytic enzymes produced from Rhizopus Sp. using prickly palm cactus husk. Chem Eng Commun 204:55–63. https://doi.org/10.1080/00986445.2016.1230851

    Article  CAS  Google Scholar 

  16. Mayolo-Deloisa K, González-González M, Rito-Palomares M (2020) Laccases in food industry: bioprocessing, potential industrial and biotechnological applications. Front Bioeng Biotechnol 8:222. https://doi.org/10.3389/fbioe.2020.00222

    Article  Google Scholar 

  17. Malinowski S, Jaroszyńska-Wolińska J, Herbert PAF (2019) Theoretical insight into plasma deposition of laccase bio-coating formation. J Mater Sci 54:10746–10763. https://doi.org/10.1007/s10853-019-03641-2

    Article  CAS  Google Scholar 

  18. Wang A, Ding Y, Li L et al (2019) A novel electrochemical enzyme biosensor for detection of 17β-estradiol by mediated electron-transfer system. Talanta 192:478–485. https://doi.org/10.1016/j.talanta.2018.09.018

    Article  CAS  Google Scholar 

  19. Dayi B, Kyzy AD, Abduloglu Y, Cikrikci K, Ardag Akdogan H (2018) Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of Morchella esculenta. Dyes Pigm 151:15–21. https://doi.org/10.1016/j.dyepig.2017.12.038

    Article  CAS  Google Scholar 

  20. Malinowski S, Wardak C, Jaroszyńska-Wolińska J, Herbert PAF, Pietrzak K (2020) New electrochemical laccase-based biosensor for dihydroxybenzene isomers determination in real water samples. J Water Process Eng 34:101150. https://doi.org/10.1016/j.jwpe.2020.101150

    Article  Google Scholar 

  21. Malinowski S, Wardak C, Pietrzak K (2020) Effect of Multi-walled carbon nanotubes on analytical parameters of laccase-based biosensors received by soft plasma polymerization technique. IEEE Sens J 20:8423–8428. https://doi.org/10.1109/JSEN.2020.2982742

    Article  CAS  Google Scholar 

  22. Wardak C, Paczosa-Bator B, Malinowski S (2020) Application of cold plasma corona discharge in preparation of laccase-based biosensors for dopamine determination. Mater Sci Eng, C 116:111199. https://doi.org/10.1016/j.msec.2020.111199

    Article  CAS  Google Scholar 

  23. Pavinatto A, Mercante LA, Facure MHM et al (2018) Ultrasensitive biosensor based on polyvinylpyrrolidone/chitosan/reduced graphene oxide electrospun nanofibers for 17α-ethinylestradiol electrochemical detection. Appl Surf Sci 458:431–437. https://doi.org/10.1016/j.apsusc.2018.07.035

    Article  CAS  Google Scholar 

  24. Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM et al (2015) Laccase-based biosensors for detection of phenolic compounds. TrAC Trends Anal Chem 74:21–45. https://doi.org/10.1016/j.trac.2015.05.008

    Article  CAS  Google Scholar 

  25. Lepore M, Portaccio M (2017) Optical detection of different phenolic compounds by means of a novel biosensor based on sol–gel immobilized laccase. Biotechnol Appl Biochem 64:782–792. https://doi.org/10.1002/bab.1551

    Article  CAS  Google Scholar 

  26. Sanz J, de Marcos S, Galbán J (2012) Autoindicating optical properties of laccase as the base of an optical biosensor film for phenol determination. Anal Bioanal Chem 404:351–359. https://doi.org/10.1007/s00216-012-6061-0

    Article  CAS  Google Scholar 

  27. O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucl Acids Res 44:D733–D745. https://doi.org/10.1093/nar/gkv1189

    Article  CAS  Google Scholar 

  28. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  29. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucl Acids Res 44:W242–W245. https://doi.org/10.1093/nar/gkw290

    Article  CAS  Google Scholar 

  30. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res 42:W252–W258. https://doi.org/10.1093/nar/gku340

    Article  CAS  Google Scholar 

  31. Manzano-Nicolas J, Taboada-Rodriguez A, Teruel-Puche J-A et al (2020) Kinetic characterization of the oxidation of catecolamines and related compounds by laccase. Int J Biol Macromol 164:1256–1266. https://doi.org/10.1016/j.ijbiomac.2020.07.112

    Article  CAS  Google Scholar 

  32. Agrawal K, Chaturvedi V, Verma P (2018) Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess 5:4. https://doi.org/10.1186/s40643-018-0190-z

    Article  Google Scholar 

  33. Hitaishi VP, Clément R, Quattrocchi L et al (2020) Interplay between orientation at electrodes and copper activation of thermus thermophilus laccase for O2 reduction. J Am Chem Soc 142:1394–1405. https://doi.org/10.1021/jacs.9b11147

    Article  CAS  Google Scholar 

  34. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, USA

    Book  Google Scholar 

  35. Goldberg M, Pecht I (1974) Fluorescence enhancement of laccase induced by reduction of Cu(II) sites. Proc Natl Acad Sci USA 71:4684–4687. https://doi.org/10.1073/pnas.71.12.4684

    Article  CAS  Google Scholar 

  36. Zhuo R, He F, Zhang X, Yang Y (2015) Characterization of a yeast recombinant laccase rLAC-EN3-1 and its application in decolorizing synthetic dye with the coexistence of metal ions and organic solvents. Biochem Eng J 93:63–72. https://doi.org/10.1016/j.bej.2014.09.004

    Article  CAS  Google Scholar 

  37. Ma S, Liu N, Jia H et al (2018) Expression, purification, and characterization of a novel laccase from Setosphaeria turcica in Eschericha coli. J Basic Microbiol 58:68–75. https://doi.org/10.1002/jobm.201700212

    Article  CAS  Google Scholar 

  38. Cano-Raya C, Dencheva NV, Braz JF, Malfois M, Denchev ZZ (2020) Optical biosensor for catechol determination based on laccase-immobilized anionic polyamide 6 microparticles. J Appl Polym Sci 137:49131. https://doi.org/10.1002/app.49131

    Article  CAS  Google Scholar 

  39. Cacciari RD, Reynoso A, Sosa S et al (2020) Effect of UVB solar irradiation on Laccase enzyme: evaluation of the photooxidation process and its impact over the enzymatic activity for pollutants bioremediation. Amino Acids 52:925–939. https://doi.org/10.1007/s00726-020-02861-0

    Article  CAS  Google Scholar 

  40. Kaur K, Singh G, Gupta V, Capalash N, Sharma P (2017) Impact of phosphate and other medium components on physiological regulation of bacterial laccase production. Biotechnol Prog 33:541–548. https://doi.org/10.1002/btpr.2408

    Article  CAS  Google Scholar 

  41. Chen Q-X, Zhang R-Q, Yang P-Z et al (1999) Effect of ethanol on the activity and conformation of Penaeus penicillatus acid phosphatase. Int J Biol Macromol 26:103–107. https://doi.org/10.1016/S0141-8130(99)00069-0

    Article  Google Scholar 

  42. Younes SB, Sayadi S (2011) Purification and characterization of a novel trimeric and thermotolerant laccase produced from the ascomycete Scytalidium thermophilum strain. J Mol Catal B Enzym 73:35–42

    Article  Google Scholar 

  43. Othman AM, Elsayed MA, Elshafei AM, Hassan MM (2018) Purification and biochemical characterization of two isolated laccase isoforms from Agaricus bisporus CU13 and their potency in dye decolorization. Int J Biol Macromol 113:1142–1148

    Article  CAS  Google Scholar 

  44. Zhuo R, Yuan P, Yang Y, Zhang S, Zhang X (2017) Induction of laccase by metal ions and aromatic compounds in Pleurotus ostreatus HAUCC 162 and decolorization of different synthetic dyes by the extracellular laccase. Biochem Eng J 117:62–72

    Article  CAS  Google Scholar 

  45. Osińska-Jaroszuk M, Jaszek M, Starosielec M et al (2018) Bacterial exopolysaccharides as a modern biotechnological tool for modification of fungal laccase properties and metal ion binding. Bioprocess Biosyst Eng 41:973–989. https://doi.org/10.1007/s00449-018-1928-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31640019 and 11674239) and Program for the Top Young Talents of Shanxi Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Wang or Zhi-Hui Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Lisa White.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, N. & Chen, ZH. Insight of the optical property of laccase during polymerics formation for application in real-time biosensing. J Mater Sci 56, 14368–14380 (2021). https://doi.org/10.1007/s10853-021-06186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06186-5

Navigation