Skip to main content

Advertisement

Log in

A metallomics approach discovers selenium-containing proteins in selenium-enriched soybean

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Our previous study found that high-molecular-weight selenium (Se) species make up 82% of the total Se in the bean of Se-enriched soybean plants (Chan et al. 2010, Metallomics, 2(2): p. 147–153). The Se species have been commonly seen in other plants in addition to soybean, but their identities remain unresolved. The present study employs a multi-technique metallomics approach to characterize the proteins containing Se in the beans of Se-enriched soybean plants. Two main categories of proteins, maturation proteins and protease inhibitors, were found in Se-containing high-performance liquid chromatography (HPLC) fractions. The proteins were screened by two-dimensional HPLC-inductively coupled plasma mass spectrometry, size-exclusion chromatography, and anion-exchange chromatography, and the Se-containing fractions were then identified by peptide mapping using HPLC-Chip-electrospray ion trap mass spectrometry. Based on the belief that Se goes into proteins through non-specific incorporation, a new method was designed and applied for the Se-containing peptide identification. The Se-containing peptide KSDQSSSYDDDEYSKPCCDLCMCTRS, part of the sequence of protein Bowman–Birk proteinase isoinhibitor (Glycine max), was found in one of the Se-containing fractions. The nutritional value of the Se-containing proteins in Se-enriched soybeans will be an interesting topic for the future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial. J Am Med Assoc 276:1957–1963

    Article  CAS  Google Scholar 

  2. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD III, Crawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley JJ, Meyskens FL Jr, Baker LH, Coltman CA Jr (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301:39–51

    Article  CAS  Google Scholar 

  3. Seo TC, Spallholz JE, Yun HK, Kim SW (2008) Selenium-enriched garlic and cabbage as a dietary selenium source for broilers. J Med Food 11:687–692

    Article  CAS  Google Scholar 

  4. Lu J, Pei H, Ip C, Lisk DJ, Ganther H, Thompson HJ (1996) Effect of an aqueous extract of selenium-enriched garlic on in vitro markers and in vivo efficacy in cancer prevention. Carcinogenesis 17:1903–1907

    Article  CAS  Google Scholar 

  5. Ip C, Lisk DJ, Thompson HJ (1996) Selenium-enriched garlic inhibits the early stage but not the late stage of mammary carcinogenesis. Carcinogenesis 17:1979–1982

    Article  CAS  Google Scholar 

  6. Ip C, Lisk DJ, Stoewsand GS (1992) Mammary cancer prevention by regular garlic and selenium-enriched garlic. Nutr Cancer 17:279–286

    Article  CAS  Google Scholar 

  7. Pyrzynska K (2009) Selenium speciation in enriched vegetables. Food Chem 114:1183–1191

    Article  CAS  Google Scholar 

  8. Finley JW (2006) Bioavailability of selenium from foods. Nutr Rev 64:146–151

    Article  Google Scholar 

  9. Arnault I, Auger J (2006) Seleno-compounds in garlic and onion. J Chromatogr A 1112:23–30

    Article  CAS  Google Scholar 

  10. Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    CAS  Google Scholar 

  11. Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  CAS  Google Scholar 

  12. Finley JW (2005) Selenium accumulation in plant foods. Nutr Rev 63:196–202

    Article  Google Scholar 

  13. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  Google Scholar 

  14. Kyriakopoulos A, Behne D (2002) Selenium-containing proteins in mammals and other forms of life. Rev Physiol Biochem Pharmacol 145:1–46

    Article  CAS  Google Scholar 

  15. Eustice DC, Foster I, Kull FJ, Shrift A (1980) In vitro incorporation of selenomethionine into protein by Vigna radiata polysomes. Plant Physiol 66:182–186

    Article  CAS  Google Scholar 

  16. Tastet L, Schaumloffel D, Lobinski R (2008) ICP-MS-assisted proteomics approach to the identification of selenium-containing proteins in selenium-rich yeast. J Anal At Spectrom 23:309–317

    Article  CAS  Google Scholar 

  17. Tastet L, Schaumloffel D, Bouyssiere B, Lobinski R (2008) Identification of selenium-containing proteins in selenium-rich yeast aqueous extract by 2D gel electrophoresis, nanoHPLC-ICP MS and nanoHPLC-ESI MS/MS. Talanta 75:1140–1145

    Article  CAS  Google Scholar 

  18. Dernovics M, Giusti P, Lobinski R (2007) ICP-MS-assisted nanoHPLC-electrospray Q/time-of-flight MS/MS selenopeptide mapping in Brazil nuts. J Anal At Spectrom 22:41–50

    Article  CAS  Google Scholar 

  19. Giusti P, Schaumloffel D, Preud’homme H, Szpunar J, Lobinski R (2006) Selenopeptide mapping in a selenium-yeast protein digest by parallel nanoHPLC-ICP-MS and nanoHPLC-electrospray-MS/MS after on-line preconcentration. J Anal At Spectrom 21:26–32

    Article  CAS  Google Scholar 

  20. Encinar JR, Ouerdane L, Buchmann W, Tortajada J, Lobinski R, Szpunar J (2003) Identification of water-soluble selenium-containing proteins in selenized yeast by size-exclusion-reversed-phase HPLC/ICPMS followed by MALDI-TOF and electrospray Q-TOF mass spectrometry. Anal Chem 75:3765–3774

    Article  Google Scholar 

  21. Fu LH, Wang XF, Eyal Y, She YM, Donald LJ, Standing KG, Ben-Hayyim G (2002) A selenoprotein in the plant kingdom. J Biol Chem 277:25983–25991

    Article  CAS  Google Scholar 

  22. Hatfield DL, Lee BJ, Price NM, Stadtman TC (1991) Selenocysteyl-tRNA occurs in the diatom Thalassiosira and in the ciliate Tetrahymena. Mol Microbiol 5:1183–1186

    Article  CAS  Google Scholar 

  23. Hatfield D, In Soon C, Mischke S, Owens LD (1992) Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Biochem Biophys Res Commun 184:254–259

    Article  CAS  Google Scholar 

  24. Rodrigo MJ, Moskovitz J, Salamini F, Bartels D (2002) Reverse genetic approaches in plants and yeast suggest a role for novel, evolutionarily conserved, selenoprotein-related genes in oxidative stress defense. Mol Genet Genomics 267:613–621

    Article  CAS  Google Scholar 

  25. Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 21:3681–3693

    Article  CAS  Google Scholar 

  26. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  CAS  Google Scholar 

  27. Chan Q, Afton SE, Caruso JA (2010) Selenium speciation profiles in selenite-enriched soybean (Glycine max) by HPLC-ICPMS and ESI-ITMS. Metallomics 2:147–153

    Article  CAS  Google Scholar 

  28. Chan Q, Afton SE, Caruso JA (2010) Investigation of selenium metabolites in Se-enriched kale, Brassica oleracea A, via HPLC-ICPMS and nanoESI-ITMS. J Anal At Spectrom 25:186–192

    Article  CAS  Google Scholar 

  29. Mounicou S, Vonderheide AP, Shann JR, Caruso JA (2006) Comparing a selenium accumulator plant (Brassica juncea) to a nonaccumulator plant (Helianthus annuus) to investigate selenium -containing proteins. Anal Bioanal Chem 386:1367–1378

    Article  CAS  Google Scholar 

  30. Gergely V, Kubachka KM, Mounicou S, Fodor P, Caruso JA (2006) Selenium speciation in Agaricus bisporus and Lentinula edodes mushroom proteins using multi-dimensional chromatography coupled to inductively coupled plasma mass spectrometry. J Chromatogr A 1101:94–102

    Article  CAS  Google Scholar 

  31. Wuilloud RG, Kannamkumarath SS, Caruso JA (2004) Multielemental speciation analysis of fungi porcini (Boletus edulis) mushroom by size exclusion liquid chromatography with sequential on-line UV-ICP-MS detection. J Agric Food Chem 52:1315–1322

    Article  CAS  Google Scholar 

  32. Mateos-Aparicio I, Redondo Cuenca A, Villanueva-Suarez MJ, Zapata-Revilla MA (2008) Soybean, a promising health source. Nutr Hosp 23:305–312

    CAS  Google Scholar 

  33. Kapolna E, Shah M, Caruso JA, Fodor P (2006) Selenium speciation studies in Se-enriched chives (Allium schoenoprasum) by HPLC-ICP-MS. Food Chem 101:1398–1406

    Article  Google Scholar 

  34. Munoz AHS, Kubachka KM, Wrobel K, Gutierrez Corona JF, Yathavakilla SKV, Caruso JA, Wrobel K (2006) Se-enriched mycelia of Pleurotus ostreatus: distribution of selenium in cell walls and cell membranes/cytosol. J Agric Food Chem 54:3440–3444

    Article  CAS  Google Scholar 

  35. Casiot C, Szpunar J, Lobinski R, Potin-Gautier M (1999) Sample preparation and HPLC separation approaches to speciation analysis of selenium in yeast by ICP-MS. J Anal At Spectrom 14:645–650

    Article  CAS  Google Scholar 

  36. Tan-Wilson AL, Chen JC, Duggan MC, Chapman C, Obach RS, Wilson KA (1987) Soybean Bowman–Birk trypsin isoinhibitors: classification and report of a glycine-rich trypsin inhibitor class. J Agric Food Chem 35:974–981

    Article  CAS  Google Scholar 

  37. Genin E, Reboud-Ravaux M, Vidal J (2010) Proteasome inhibitors: recent advances and new perspectives in medicinal chemistry. Curr Top Med Chem 10:232–256

    Article  CAS  Google Scholar 

  38. Weed H, MacGandy RB, Kennedy AR (1985) Protection against dimethylhydrazine induced adenomatous tumors of the mouse colon by the dietary addition of an extract of soybeans containing the Bowman–Birk protease inhibitor. Carcinogenesis 6:1239–1241

    Article  CAS  Google Scholar 

  39. St. Clair W, Billings P, Carew J, Keller-McGandy C, Newberne P, Kennedy AR (1990) Suppression of DMH-induced carcinogenesis in mice by dietary addition of the Bowman–Birk protease inhibitor. Cancer Res 50:580–586

    CAS  Google Scholar 

  40. Kennedy AR (1993) Cancer prevention by protease inhibitors. Prev Med 22:796–811

    Article  CAS  Google Scholar 

  41. Kennedy AR (2005) In: Sugano M (ed) Soy in health and disease prevention. CRC Press, Boca Raton, FL, pp 207–223

    Chapter  Google Scholar 

  42. Davis JG, Wan XS, Ware JH, Kennedy AR (2010) Dietary supplements reduce the cataractogenic potential of proton and HZE-particle radiation in mice. Radiat Res 173:353–361

    Article  CAS  Google Scholar 

  43. Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium-tolerant Astragalus species. Plant Physiol 67:1051–1053

    Article  CAS  Google Scholar 

  44. Koepke J, Ermler U, Warkentin E, Wenzl G, Flecker P (2000) Crystal structure of cancer chemopreventive Bowman–Birk inhibitor in ternary complex with bovine trypsin at 2.3 e resolution. Structural basis of Janus-faced serine protease inhibitor specificity. J Mol Biol 298:477–491

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Agilent Technologies for instrument support and maintenance and to CEM for microwave instrumentation and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Caruso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, Q., Caruso, J.A. A metallomics approach discovers selenium-containing proteins in selenium-enriched soybean. Anal Bioanal Chem 403, 1311–1321 (2012). https://doi.org/10.1007/s00216-012-5948-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5948-0

Keywords

Navigation