Skip to main content
Log in

Ambient-ageing processes in amine self-assembled monolayers on microarray slides as studied by ToF-SIMS with principal component analysis, XPS, and NEXAFS spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We investigated the ageing of amine-terminated self-assembled monolayers (amine-SAMs) on different silica substrates due to exposure to different ambient gases, pressures, and/or temperatures using time-of-flight secondary ion mass spectrometry (ToF-SIMS) with principal component analysis and complementary methods of surface analysis as X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS). The goal of this study is to examine the durability of primary amine groups of amine-SAMs stored in a user laboratory prior to being used as supports for biomolecule immobilization and other applications. We prepared amine-SAMs on the native oxides of silicon wafers and glass slides using 3-aminopropyl triethoxysilane, by using optimized conditions such as anhydrous organic solvent and reaction time scale of hours to avoid multilayer growth. Selected commercial amine-SAM slides have been investigated, too. When the amine-SAMs are exposed to air, oxygen incorporation occurs, followed by formation of amide groups. The formation of oxygen species due to ageing was proved by ToF-SIMS, XPS, and NEXAFS findings such as CNO secondary ion emission at m/z 42, observation of the N 1s HNC=O component peak at 400.2–400.3 eV in XPS, and, last but not least, by formation of a π*(HNC=O) resonance at 401 eV in the N K-edge X-ray absorption spectrum. It is concluded that the used multi-method approach comprising complementary ToF-SIMS, XPS, and NEXAFS analyses is well suited for a thorough study of chemical aspects of ageing phenomena of amine-SAM surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ulman A (1996) Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  2. Tanigawa M, Okada T (1998) Anal Chim Acta 365:19–25

    Article  CAS  Google Scholar 

  3. Graf N, Gross T, Wirth T, Weigel W, Unger WES (2009) Anal Bioanal Chem 393:1907–1912

    Article  CAS  Google Scholar 

  4. Kurth DG, Bein T (1993) Langmuir 9:2965–1973

    Article  CAS  Google Scholar 

  5. Sugimura H, Nakagiri N (1997) Langmuir 119:9226–9229

    CAS  Google Scholar 

  6. Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P (2006) Biomaterials 27:631–642

    Article  CAS  Google Scholar 

  7. Chang YC, Frank CW (1998) Langmuir 14:326–334

    Article  Google Scholar 

  8. Cooper TM, Campbell AL, Crane RL (1995) Langmuir 11:2713–2718

    Article  CAS  Google Scholar 

  9. Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D (2006) Anal Chim Acta 568:84–108

    Article  CAS  Google Scholar 

  10. Liu YJ, Wang AB, Claus RO (1997) Appl Phys Lett 71:2265–2267

    Article  CAS  Google Scholar 

  11. Haller I (1978) J Am Chem Soc 100:8050–8055

    Article  CAS  Google Scholar 

  12. Petri DFS, Wenz G, Schunk P, Schimmel T (1999) Langmuir 15:4520–4523

    Article  CAS  Google Scholar 

  13. Duburcq X, Olivier C, Desmet R, Halasa M, Carion O, Grandidier B, Heim T, Stievenard D, Auriault C, Melnyk O (2004) Bioconjug Chem 15:317–325

    Article  CAS  Google Scholar 

  14. Min H, Park J-W, Shon HK, Moon DW, Lee TG (2008) Appl Surf Sci 255:1025–1028

    Article  CAS  Google Scholar 

  15. ISO 15472 (2010) Surface chemical analysis—X-ray photoelectron spectrometers—calibration of energy scales

  16. ISO 19318 (2004) Surface chemical analysis—X-ray photoelectron spectroscopy—reporting of methods used for charge control and charge correction

  17. Beamson G, Briggs D (1992) High resolution XPS of organic polymers. Wiley, Chichester

    Google Scholar 

  18. Kummer K, Vyalikh DV, Gavrila G, Kade A, Weigel-Jech M, Mertig M, Molodtsov SLJ (2008) Electron Spec R Phenom 163:59–64

    Article  CAS  Google Scholar 

  19. Smekal W, Werner WSM, Powell CJ (2005) Surf Interf Anal 37:1059–1067

    Article  CAS  Google Scholar 

  20. Tanuma S, Powell CJ, Penn DR (1994) Surf. Interf Anal 21:165–176

    Article  CAS  Google Scholar 

  21. Scofield JHJ (1976) Electron Spec R Phenom 8:129–137

    Article  CAS  Google Scholar 

  22. Chauhan AK, Aswal DK, Koiry SP, Gupta SK, Yakhmi JV, Sürgers C, Guerin D, Lenfant S, Vuillaume D (2008) Appl Phys A 90:581–589

    Article  CAS  Google Scholar 

  23. Stöhr I (1992) NEXAFS spectroscopy. Springer, Heidelberg

    Google Scholar 

  24. Batson PE (1993) Phys Rev B 48:2608–2610

    Article  CAS  Google Scholar 

  25. Graf N, Yegen E, Gross T, Lippitz A, Wilfried W, Krakert S, Terfort A, Unger WES (2009) Surf Sci 603:2849–2860

    Article  CAS  Google Scholar 

  26. Truica-Marasescu F, Wertheimer MR (2008) Plasma Proc Polym 5:44–57

    Article  CAS  Google Scholar 

  27. Pippig F, Holländer A (2007) Appl Surf Sci 253:6817–6823

    Article  CAS  Google Scholar 

  28. Shard AG, Whittle JD, Beck AJ, Brookes PN, Bullett NA, Talib RA, Mistry A, Barton D, McArthur SL (2004) J Phys Chem B 108:12472–12480

    Article  CAS  Google Scholar 

  29. Retzko I, Friedrich JF, Lippitz A, Unger WES (2001) J Electron Spec R Phenom 121:111–129

    Article  CAS  Google Scholar 

  30. Briggs D, Brewis DM, Dahm RH, Fletcher IW (2003) Surf Interf Anal 35:156–167

    Article  CAS  Google Scholar 

  31. Cecchet F, Pilling M, Hevesi L, Schergna S, Wong JKY, Clarkson GJ, Leigh DA, Rudolf PJ (2003) Phys Chem B 107:10863–10872

    Article  CAS  Google Scholar 

  32. Baio JE, Weidner T, Brison J, Graham DJ, Gamble LJ, Castner DG (2009) J Electron Spec R Phenom 172:2–8

    Article  CAS  Google Scholar 

  33. Oran U, Swaraj S, Lippitz A, Unger WES (2006) Plasma Proc Polym 3:288–298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. H. Min gratefully acknowledges financial support through the Adolf Martens Fellowship Program. Support by staff at BESSY II (Dr. O. Schwartzkopf, Dr. W. Braun, Dr. G. Reichardt, and M. Mast) and Dr. A. Nefedov (KIT) during our activities at the HE-SGM beamline is gratefully acknowledged, too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang E. S. Unger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, H., Girard-Lauriault, PL., Gross, T. et al. Ambient-ageing processes in amine self-assembled monolayers on microarray slides as studied by ToF-SIMS with principal component analysis, XPS, and NEXAFS spectroscopy. Anal Bioanal Chem 403, 613–623 (2012). https://doi.org/10.1007/s00216-012-5862-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5862-5

Keywords

Navigation