Skip to main content
Log in

Quantitative analysis of azaspiracids in Azadinium spinosum cultures

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Azaspiracids (AZAs) are secondary metabolites of Azadinium spinosum that can accumulate in shellfish and cause food poisoning when consumed. We describe here an analytical procedure for the determination of AZAs in cultures of A. spinosum with a focus on the formation of AZA methyl esters as artefacts during extraction and sample pre-treatment. A. spinosum cells were collected from bioreactor cultures using centrifugation or filtration. Different extraction procedures were evaluated for formation of methyl ester artefacts, yield, and matrix effects. Filtration of cultures using glass-fibre filters led to increased formation of methyl esters, and centrifugation is recommended for recovery of cells. The extraction solvent (methanol (MeOH), acetone, and acetonitrile (MeCN)) did not significantly affect the yield of AZAs as long as the organic content was 80% or higher. However, the use of MeOH as extraction solvent led to increased formation of methyl esters. AZA1 recovery over two successive extractions was 100% at the 95% confidence level for acetone and MeOH. In standard-addition experiments, no significant matrix effects were observed in extracts of A. spinosum or Azadinium obesum up to a sample size of 4.5 × 109 μm3. Moreover, experiments carried out to clarify the formation and structure of methylated AZA analogues led to the description of two AZA methyl esters and to the correction of the chemical structures of AZAs29–32.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McMahon T, Silke J (1996) West coast of Ireland winter toxicity of unknown aetiology in mussels. Harmful Algae News 14:2

    Google Scholar 

  2. Satake M, Ofuji K, Naoki H, James KJ, Furey A, McMahon T, Silke J, Yasumoto T (1998) Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J Am Chem Soc 120:9967–9968

    Article  CAS  Google Scholar 

  3. Nicolaou KC, Koftis TV, Vyskocil S, Petrovic G, Tang WJ, Frederick MO, Chen DYK, Li YW, Ling TT, Yamada YMA (2006) Total synthesis and structural elucidation of azaspiracid-1. Final assignment and total synthesis of the correct structure of azaspiracid-1. J Am Chem Soc 128:2859–2872

    Article  CAS  Google Scholar 

  4. Ofuji K, Satake M, McMahon T, James KJ, Naoki H, Oshima Y, Yasumoto T (2001) Structures of azaspiracid analogs, azaspiracid-4 and azaspiracid-5, causative toxins of azaspiracid poisoning in Europe. Biosci Biotechnol Biochem 65:740–742

    Article  CAS  Google Scholar 

  5. Ofuji K, Satake M, McMahon T, Silke J, James KJ, Naoki H, Oshima Y, Yasumoto T (1999) Two analogs of azaspiracid isolated from mussels, Mytilus edulis, involved in human intoxication in Ireland. Nat Toxins 7:99–102

    Article  CAS  Google Scholar 

  6. James KJ, Sierra MD, Lehane M, Magdalena AB, Furey A (2003) Detection of five new hydroxyl analogues of azaspiracids in shellfish using multiple tandem mass spectrometry. Toxicon 41:277–283

    Article  CAS  Google Scholar 

  7. Rehmann N, Hess P, Quilliam MA (2008) Discovery of new analogs of the marine biotoxin azaspiracid in blue mussels (Mytilus edulis) by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 22:549–558

    Article  CAS  Google Scholar 

  8. Amzil Z, Sibat M, Royer F, Savar V (2008) First report on azaspiracid and yessotoxin groups detection in French shellfish. Toxicon 52:39–48

    Article  CAS  Google Scholar 

  9. Furey A, O’Doherty S, O’Callaghan K, Lehane M, James KJ (2010) Azaspiracid poisoning (AZP) toxins in shellfish: toxicological and health considerations. Toxicon 56:173–190

    Article  CAS  Google Scholar 

  10. Ueoka R, Ito A, Izumikawa M, Maeda S, Takagi M, Shin-Ya K, Yoshida M, van Soest RWM, Matsunaga S (2009) Isolation of azaspiracid-2 from a marine sponge Echinoclathria sp as a potent cytotoxin. Toxicon 53:680–684

    Article  CAS  Google Scholar 

  11. Magdalena AB, Lehane M, Krys S, Fernandez ML, Furey A, James KJ (2003) The first identification of azaspiracids in shellfish from France and Spain. Toxicon 42:105–108

    Article  CAS  Google Scholar 

  12. Alvarez G, Uribe E, Avalos P, Marino C, Blanco J (2010) First identification of azaspiracid and spirolides in Mesodesma donacium and Mulinia edulis from Northern Chile. Toxicon 55:638–641

    Article  CAS  Google Scholar 

  13. Taleb H, Vale P, Amanhir R, Benhadouch A, Sagou R, Chafik A (2006) First detection of azaspiracids in mussels in north west Africa. J Shellfish Res 25:1067–1070

    Google Scholar 

  14. Twiner MJ, Rehmann N, Hess P, Doucette GJ (2008) Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Marine Drugs 6:39–72

    Article  CAS  Google Scholar 

  15. James KJ, Moroney C, Roden C, Satake M, Yasumoto T, Lehane M, Furey A (2003) Ubiquitous ‘benign’ alga emerges as the cause of shellfish contamination responsible for the human toxic syndrome, azaspiracid poisoning. Toxicon 41:145–151

    Article  CAS  Google Scholar 

  16. Hess P, Nguyen L, Aasen J, Keogh M, Kilcoyne J, McCarron P, Aune T (2005) Tissue distribution, effects of cooking and parameters affecting the extraction of azaspiracids from mussels, Mytilus edulis, prior to analysis by liquid chromatography coupled to mass spectrometry. Toxicon 46:62–71

    Article  CAS  Google Scholar 

  17. Miles CO, Wilkins AL, Samdal IA, Sandvik M, Petersen D, Quilliam MA, Naustvoll LJ, Rundberget T, Torgersen T, Hovgaard P, Jensen DJ, Cooney JM (2004) A novel pectenotoxin, PTX-12, in Dinophysis spp. and shellfish from Norway. Chem Res Toxicol 17:1423–1433

    Article  CAS  Google Scholar 

  18. Gribble KE, Anderson DM (2006) Molecular phylogeny of the heterotrophic dinoflagellates, Protoperidinium, Diplopsalis and Preperidinium (Dinophyceae), inferred from large subunit rDNA. J Phycol 42:1081–1095

    Article  Google Scholar 

  19. Miles CO, Wilkins AL, Munday R, Dines MH, Hawkes AD, Briggs LR, Sandvik M, Jensen DJ, Cooney JM, Holland PT, Quilliam MA, MacKenzie AL, Beuzenberg V, Towers NR (2004) Isolation of pectenotoxin-2 from Dinophysis acuta and its conversion to pectenotoxin-2 seco acid, and preliminary assessment of their acute toxicities. Toxicon 43:1–9

    Article  CAS  Google Scholar 

  20. Tillmann U, Elbrachter M, Krock B, John U, Cembella A (2009) Azadinium spinosum gen. et sp nov (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur J Phycol 44:63–79

    Article  CAS  Google Scholar 

  21. Krock B, Tillmann U, John U, Cembella A (2008) LC-MS-MS aboard ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea. Anal Bioanal Chem 392:797–803

    Article  CAS  Google Scholar 

  22. Krock B, Tillmann U, John U, Cembella AD (2009) Characterization of azaspiracids in plankton size-fractions and isolation of an azaspiracid-producing dinoflagellate from the North Sea. Harmful Algae 8:254–263

    Article  CAS  Google Scholar 

  23. Tillmann U, Elbrachter M, John U, Krock B, Cembella A (2010) Azadinium obesum (Dinophyceae), a new nontoxic species in the genus that can produce azaspiracid toxins. Phycologia 49:169–182

    Article  Google Scholar 

  24. Tillmann U, Elbrachter M, John U, Krock B (2011) A new non-toxic species in the dinoflagellate genus Azadinium: A. poporum sp. nov. Eur J Phycol 46:74–87

    Article  CAS  Google Scholar 

  25. Hernandez-Becerril DU, Escobae-Morales S, Morreno-Gutiérez, SP, Baron-Campis SA (2010) Two new records of potentially toxic phytoplankton species from the Mexican Pacific. Abstract book of the 14th International conference on harmful algae, Hersonissos, p 137

  26. Akselman R, Negri MR (2010) Azadinium spinosum Elbrätchter et Tillmann (Dinophyceae) is present and also caused blooms at the south western Atlantic. Abstract book of the 14th International conference on harmful algae, Hersonissos, p 132

  27. Salas R, Tillmann U, John U, Kilcoyne J, Burson A, Cantwell C, Hess P, Jauffrais T, Silke J (2011) The role of Azadinium spinosum (Dinophyceae) in the production of azaspiracid shellfish poisoning in mussels. Harmful Algae 10:774–783

    Article  Google Scholar 

  28. Quilliam MA (2003) In: Hallegraef GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Saint-Berthevin

    Google Scholar 

  29. McNabb P, Selwood AI, Holland PT (2005) Multiresidue method for determination of algal toxins in shellfish: single-laboratory validation and interlaboratory study. J AOAC Int 88:761–772

    CAS  Google Scholar 

  30. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom 11:942–950

    Article  CAS  Google Scholar 

  31. Fux E, Rode D, Bire R, Hess P (2008) Approaches to the evaluation of matrix effects in the liquid chromatography-mass spectrometry (LC-MS) analysis of three regulated lipophilic toxin groups in mussel matrix (Mytilus edulis). Food Addit Contam Part A 25:1024–1032

    Article  CAS  Google Scholar 

  32. Kilcoyne J, Fux E (2010) Strategies for the elimination of matrix effects in the liquid chromatography tandem mass spectrometry analysis of the lipophilic toxins okadaic acid and azaspiracid-1 in molluscan shellfish. J Chromatogr A 1217:7123–7130

    Article  CAS  Google Scholar 

  33. McCarron P, Giddings SD, Quilliam MA (2011) A mussel tissue certified reference material for multiple phycotoxins. Part 2: liquid chromatography-mass spectrometry, sample extraction and quantitation procedures. Anal Bioanal Chem 400:835–846

    Article  CAS  Google Scholar 

  34. Rehmann N (2008) Preparative isolation and purification of azaspiracids and related toxins from blue mussels and characterisation of new toxin analogs. Ph.D. thesis, University College Dublin, Dublin

  35. Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23:633–638

    Article  Google Scholar 

  36. Sigma-Aldrich (2007) Technical Bulletin AL-180: diazald and diazomethane generators, 6 pp. Available from: http://www.sigmaaldrich.com/etc/medialib/docs/Aldrich/Bulletin/al_techbull_al180.Par.0001.File.tmp/al_techbull_al180.pdf. Accessed 25 July 2011

  37. McCarron P, Giddings SD, Miles CO, Quilliam MA (2011) Derivatization of azaspiracid biotoxins for analysis by liquid chromatography with fluorescence detection. J Chromatogr A 1218:8089–8096

    Article  CAS  Google Scholar 

  38. Quilliam MA, Hardstaff WR, Ishida N, MacLachlan JL, Reeves AR, Ross NW, Windust AJ (1996) In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and Toxic Algal Blooms. UNESCO and Tohoku University, Sendai

    Google Scholar 

  39. Brondz I, Ekeberg D, Hoiland K, Bell DS, Annino AR (2007) The real nature of the indole alkaloids in Cortinarius infractus: evaluation of artifact formation through solvent extraction method development. J Chromatogr A 1148:1–7

    Article  CAS  Google Scholar 

  40. McCarron P, Kilcoyne J, Miles CO, Hess P (2009) Formation of azaspiracids-3, -4, -6, and -9 via decarboxylation of carboxyazaspiracid metabolites from shellfish. J Agric Food Chem 57:160–169

    Article  CAS  Google Scholar 

  41. Pfiester LA, Anderson DM (1987) Dinoflagellate reproduction. In: Taylor FJR (ed) The biology of dinoflagellates. Botanical monograph vol 21. Blackwell, Oxford

    Google Scholar 

  42. Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments—spectrographic equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  43. Fux E (2008) Development and evaluation of passive sampling and LC-MS based techniques for the detection and monitoring of lipophilic marine toxins in mesocosm and field studies. Ph.D. thesis, Dublin Institute of Technology

Download references

Acknowledgements

This study was carried out under the Sea Change strategy with the support of the Marine Institute and the Marine Research Sub-Programme of the National Development Plan 2007–2013, co-financed by the European Regional Development Fund (ASTOX2). Further funding was obtained through Ifremer from the French Ministry of Education, Research and Technology through Programme 187 of the National Finance Law. The authors would like to thank John Lee and Dr. Thomas Glauner of Agilent Technologies for their collaboration on Q-TOF Technology. The authors would also like to thank all the members of the laboratory EMP/PHYC at the Atlantic Centre of Ifremer for their help and technical advice during this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thierry Jauffrais or Philipp Hess.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jauffrais, T., Herrenknecht, C., Séchet, V. et al. Quantitative analysis of azaspiracids in Azadinium spinosum cultures. Anal Bioanal Chem 403, 833–846 (2012). https://doi.org/10.1007/s00216-012-5849-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5849-2

Keywords

Navigation