Skip to main content

Advertisement

Log in

Comparison of three sequential extraction procedures for fractionation of arsenic from highly polluted mining sediments

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Three sequential extraction procedures were evaluated for the study of fractionation of arsenic in environmental solid samples. The procedures considered were as follows: i) the standardized and widely recognised BCR procedure, conceived for the study of the partitioning of heavy metals; ii) the procedure developed by Manful, who adapted a phosphorus scheme for arsenic fractionation; and iii) a novel sequential extraction scheme especially devised for arsenic. The efficiency and suitability of these methods and the corresponding extraction steps for partitioning arsenic obtained from the most important solid forms were tested by application of the methods to real sediment samples heavily polluted by mining activity. Results showed the BCR scheme was inappropriate for arsenic fractionation. The procedure could, nevertheless, be a first approach for the assessment of arsenic partitioning, because its first extraction step can be regarded as adequate for the estimation of the most easily mobilizable arsenic. Although the Manful scheme results in a more differentiated arsenic pattern, some drawbacks arise from the lack of selectivity of some of the reagents used, for example overlapping of specific target phases, overestimation of adsorbed arsenate because of inadequate coprecipitation processes, and the inability to discriminate among amorphous and crystalline oxyhydroxides which are mainly responsible for arsenic retention. The novel procedure achieves the most suitable arsenic fractionation, because the main phases retaining arsenic are selectively targeted according to mobilization potential. In addition, the simplicity of its extraction steps would enable automation in a continuous flow scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fergusson JE (1990) The Heavy Elements: Chemistry, Environmental Impact and Health Effects. Pergamon Press, Oxford

    Google Scholar 

  2. Crecelius EA (1974) The geochemistry of arsenic and antimony in Puget Sound and Lake Washington, WA. University of Washington, Seattle, p 133

    Google Scholar 

  3. Melamed D (2005) Monitoring arsenic in the environment: a review of science and technologies with the potential for field measurements. Anal Chim Acta 532:1–13

    Article  CAS  Google Scholar 

  4. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  5. Van Herreweghe S, Swennen R, Vandecasteele C, Cappuyns V (2003) Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ Pollut 122:323–342

    Article  Google Scholar 

  6. Gómez-Caminero A, Howe P, Hughes M, Kenyon E, Lewis DR, Moore M, Ng J, Aitio A, Beecking G (2001) Arsenic and arsenic compounds. The Environmental Health Criteria, 2nd edn. World Health Organisation, Finland

    Google Scholar 

  7. Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in contaminated soil. Environ Sci Technol 25:1414–1419

    Article  CAS  Google Scholar 

  8. Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L (2006) Arsenite and Arsenate Binding to Dissolved Humic Acids: Influence of pH, Type of Humic Acid, and Aluminum. Environ Sci Technol 40:6015–6020

    Article  CAS  Google Scholar 

  9. Carbonell-Barrachina A, Jugsujinda A, DeLaune RD, Patrick WH Jr (1999) The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soilL. Environ Int 25:613–618

    Article  CAS  Google Scholar 

  10. Matera V, Le Hécho I, Laboudigue A, Thomas P, Tellier S, Astruc M (2003) A methodological approach for the identification of arsenic bearing phases in polluted soils. Environ Pollut 126:51–64

    Article  CAS  Google Scholar 

  11. Dzombak DA, Morel FMM (1990) Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley–Interscience, New York

    Google Scholar 

  12. Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil—arsenic. Soil Sci Soc Am J 52:1297–1300

    Article  CAS  Google Scholar 

  13. Pierce M, Moore C (1982) Adsorption of Arsenite and Arsenate on Amorphous Iron hydroxide. Water Res 16:1247–1253

    Article  CAS  Google Scholar 

  14. Fuller CC, Davis JA (1989) Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters. Nature 340:52–54

    Article  CAS  Google Scholar 

  15. Thanabalasingam P, Pickering WF (1986) Arsenic sorption by humic acids. Environ Pollut B 12:233–246

    Article  CAS  Google Scholar 

  16. Saada A, Breeze D, Crouzet C, Cornu S, Baranger P (2003) Adsorption of arsenic (V) on kaolinite and on kaolinite–humic acid complexes. Role of humic acid nitrogen groups. Chemosphere 51:757–763

    Article  CAS  Google Scholar 

  17. Warwick P, Inam E, Evans N (2005) Arsenic's interactions with humic acid. Environ Chem 2:119–124

    Article  CAS  Google Scholar 

  18. Meunier L, Koch I, Reimer KJ (2011) Effects of organic matter and ageing on the bioaccessibility of arsenic. Environ Pollut 159:2530–2536

    Article  CAS  Google Scholar 

  19. Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption on to hematite. Environ Sci Technol 36:2889–2896

    Article  CAS  Google Scholar 

  20. Xu H, Allard B, Grimvall A (1991) Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Pollut 40:269–278

    Article  Google Scholar 

  21. Xu H, Allard B, Grimvall A (1998) Influence of pH and organic substance on the adsorption of As(V) on geological materials. Water Air Soil Pollut 57:293–305

    Google Scholar 

  22. Jackson BP, Miller WP (1999) Soluble arsenic and selenium species in fly ash/organic waste-amended soils using ion chromatography-inductively coupled plasma spectrometry. Environ Sci Technol 33:270–275

    Article  CAS  Google Scholar 

  23. Manning BA, Goldberg S (1996) Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J 60:121–131

    Article  CAS  Google Scholar 

  24. Yan Chu H (1994) Arsenic distribution in soils. In: Nriagu JO (ed) Arsenic in the Environment Part I Cycling and characterization. John Wiley and Sons, New York, NY, pp 17–50

    Google Scholar 

  25. Sadiq M (1997) Arsenic Chemistry in Soils: An Overview of Thermodynamic Predictions and Field Observations. Water Air Soil Pollut 93:117–136

    CAS  Google Scholar 

  26. Manning BA, Goldberg S (1997) Adsorption and Stability of Arsenic(III) at the Clay Mineral–Water Interface. Environ Sci Technol 31:2005–2011

    Article  CAS  Google Scholar 

  27. Peterson ML, Carpenter R (1983) Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic Fjord. Mar Chem 12:295–321

    Article  CAS  Google Scholar 

  28. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  29. Nordstrom DK (2000) An overview of arsenic mass poisoning in Bangladesh and West Bengal, India. In: Young C (ed) Minor Elements 2000: Processing and Environmental Aspects of As, Sb, Se, Te, and Bi. Society for Mining Metallurgy & Exploration, p 21–30. https://estore.infomine.com/minor-elements-2000-processing-and-environmental-aspects-of-as-sb-se-te-and-bi-p240c1.aspx

  30. Davis A, Ruby MV, Bloom M, Schoof R, Freeman G, Bergstrom PD (1996) Mineralogic constraints on the bioavailability of arsenic in smelter-impacted soils. Environ Sci Technol 30:392–399

    Article  CAS  Google Scholar 

  31. Bird G, Brewera PA, Macklina MG, Serbanb M, Balteanub D, Drigab B (2005) Heavy metal contamination in the Aries river catchment, western Romania: Implications for development of the Rosia Montana gold deposit. J Geochem Explor 86:26–48

    Google Scholar 

  32. Tessier A, Campbell GC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  33. Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857

    Article  CAS  Google Scholar 

  34. Quevauviller P (1998) Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trends Anal Chem 17:289–298

    Article  CAS  Google Scholar 

  35. Quevauviller P, Ure A, Muntau H, Griepink B (1993) Improvement of Analytical Measurements within the BCR-Program - Single and Sequential Extraction Procedures applied to Soil and Sediment Analysis. Int J Environ Anal Chem 51:129–134

    Article  CAS  Google Scholar 

  36. Davidson CM, Thomas RP, McVey SE, Perala R, Littlejohn D, Ure AM (1994) Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Anal Chim Acta 291:277–286

    Article  CAS  Google Scholar 

  37. Ure AM, Quevauviller P, Muntau H, Griepinck B (1993) Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51:135–151

    Article  CAS  Google Scholar 

  38. Mossop KF, Davidson CM (2003) Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal Chim Acta 478:111–118

    Article  CAS  Google Scholar 

  39. Sahuquillo A, López-Sánchez JF, Rubio R, Rauret G, Thomas RP, Davidson CM, Ure AM (1999) Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Anal Chim Acta 382:317–327

    Article  CAS  Google Scholar 

  40. Quevauviller P, Rauret G, López-Sànchez JF, Rubio R, Ure AM, Muntau H (1997) Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci Total Environ 205:223–234

    Google Scholar 

  41. Fernández E, Jiménez R, Lallena AM, Aguilar J (2004) Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environ Pollut 131:355–364

    Article  Google Scholar 

  42. Szakova J, Tlustos P, Balik J, Pavlikova D, Vanek V (1999) The sequential analytical procedure as a tool for evaluation of As, Cd and Zn mobility in soil. Fresen J Anal Chem 363:594–595

    Google Scholar 

  43. Baig JA, Kazi TG, Arain MB, Shah AQ, Sarfraz RA, Afridi HI, Kandhro GA, Jamali MK, Khan S (2009) Arsenic fractionation in sediments of different origins using BCR sequential and single extraction methods. J Hazard Mater 167:745–751

    Article  CAS  Google Scholar 

  44. Otones V, Álvarez-Ayuso E, García-Sánchez A, Santa Regina I, Murciego A (2011) Arsenic distribution in soils and plants of an arsenic impacted former mining area. Environ Pollut 159:2637–2647

    Article  CAS  Google Scholar 

  45. Larios R, Fernández-Martínez R, Ordóñez A, Loredo J, Galán P, Gómez MB, Silva V, Rucandio MI (2008) Arsenic geochemistry in sediments from an old mining area in Asturias (Spain). In: Bobos ISdSJ, Ferreira da Silva E, Rosário Pereira M (eds) Geochemistry of Arsenic International Workshop Extended Abstracts. Universidade do Porto, Facultad de Ciências, Departamento de Geología, Oporto, pp 25–28

  46. Gruebel KA, Davis JA, Leckie JO (1988) The feasibility of using sequential extraction techniques for arsenic and selenium in soils and sediments. Soil Sci Soc Am J 52:390–397

    Article  CAS  Google Scholar 

  47. Chang SC, Jackson ML (1957) Fractionation of soil phosphorus. Soil Sci 84:133–144

    Article  CAS  Google Scholar 

  48. Manful G (1992) Occurrence and Ecochemical Behaviour of Arsenic in a Goldsmelter Impacted Area in Ghana. PhD Thesis. Centrum voor milieusaneringen aan de RUG, University of Gent, Belgium

  49. Loredo J, Pereira A, Ordoñez A (2003) Untreated abandoned mercury mining works in a scenic area of Asturias (Spain). Environ Int 29:481–491

    Article  CAS  Google Scholar 

  50. Luque C (1992) El mercurio en la Cordillera Cantábrica. In: Guinea G, Frías M (eds) Recursos minerales de España. CSIC. Textos Universitarios, Madrid (Spain), pp 803–826

    Google Scholar 

  51. Luque C (1985) Las mineralizaciones de mercurio de la Cordillera Cantábrica. PhD Thesis. Oviedo (Spain)

  52. Loredo J, Luque C et al (1988) Conditions of formation of mercury deposits from the Cantabrian Zone (Spain). B Mineral 111:393–400

    CAS  Google Scholar 

  53. Loredo J, Ordóñez A, Baldo C, García-Iglesias J (2003) Arsenic mobilization from waste piles of the El Terronal mine, Asturias, Spain. Geochemistry: Exploration, Environment, Analysis 3:229–237

    Google Scholar 

  54. Larios R, Fernández-Martínez R, Silva V, Loredo J, Rucandio I (2011) Arsenic Contamination and Speciation in Surrounding Waters of three old Cinnabar Mines. J Environ Monit 14: 531–542

    Google Scholar 

  55. Larios R, Fernández-Martínez R, LeHecho I, Rucandio I (2012) A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas. Sci Total Environ 414:600–607

    Google Scholar 

  56. Calderon V, Ryan A, Shrader D (2007) Analysis of Environmental Samples by ICP-OES Following US EPA Guidelines. Atomic Spectroscopy Marzo:17–18

  57. Martin TD, Brockhoff CA, Creed JT, EMMC Methods Work Group (1994) Mehod 200.7: Dertermination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry, Revision 4.4

    Google Scholar 

  58. USEPA (2007) Method 9056A: Determination of inorganic anions by ion chromatography., Rev. 1

    Google Scholar 

  59. Fernández-Martínez R (2006) Desarrollo y Aplicación de Nuevas Metodologías para el Estudio del Fraccionamiento y Movilidad del Mercurio en Muestras Medioambientales. Química Analítica y Análisis Instrumental. PhD Thesis. Universidad Autónoma de Madrid (Spain), pp 343

  60. Petit MD, Rucandio MI (1999) Sequential extractions for determination of cadmium distribution in coal fly ash, soil and sediment samples. Anal Chim Acta 401:283–291

    Google Scholar 

  61. Larios R, Fernández-Martínez R, Silva V, Galán-Valera MP, Gómez MB, Rucandio MI (2010) New methodology for the evaluation of arsenic fractionation in environmental solid samples. 7th Aegean Analytical Chemistry Days AACD, Sep 29–Oct 3, 2010. Lesvos 2010:291

    Google Scholar 

  62. Loredo J, Ordóñez A, Pendás F (2003) Problems and options in relation to abandoned mine sites. In: Agioutantis Z (ed) International Conference on Sustainable Development Indicators in the Mineral Industries. Milos, Greece, pp 205–210

    Google Scholar 

  63. Morillo J, Usero J, Rojas R (2008) Fractionation of metals and As in sediments from a biosphere reserve (Odiel salt marshes) affected by acidic mine drainage. Environ Monit Assess 139:329–337

    Article  CAS  Google Scholar 

  64. Müller K, Daus B, Morgenstern P, Wennrich R (2007) Mobilization of Antimony and Arsenic in Soil and Sediment Samples – Evaluation of Different Leaching Procedures. Water Air Soil Pollut 183:427–436

    Article  Google Scholar 

  65. Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  66. Kim JY, Davis AP, Kim KW (2003) Stabilization of Available Arsenic in Contaminated Mine Tailings Using Iron. Environ Sci Technol 37:189–195

    Article  CAS  Google Scholar 

  67. De Vitre R, Belzile N, Tessier A (1991) Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides. Limnol Oceanogr 36:1480–1485

    Article  Google Scholar 

  68. Sullivan KA, Aller RC (1996) Diagenetic cycling of arsenic in Amazon shelf sediments. Geochim Cosmochim Acta 60:1465–1477

    Article  CAS  Google Scholar 

  69. Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal Chem 21:451–467

    Article  CAS  Google Scholar 

  70. Coetzee PP (1993) Determination and speciation of heavy metals in sediments of the Hartbeespoort Dam by sequential chemical extraction. Water SA 19:291–300

    CAS  Google Scholar 

  71. Gleyzes C, Tellier S, Sabrier R, Astruc A (2001) Arsenic characterisation in industrial soils by chemical extractions. Environ Technol 22:27–38

    Article  CAS  Google Scholar 

  72. Hall GEM, Vaive JE, Beer R, Hoashi M (1996) Selective leaches revisited, with emphasis on the amorphous F oxyhydroxide phase extraction. J Geochem Explor 56:59–78

    Article  CAS  Google Scholar 

  73. Neaman A, Waller B, Mouélé F, Trolard F, Bourrié G (2004) Improved methods for selective dissolution of manganese oxides from soils and rocks. Eur J Soil Sci 55:47–54

    Google Scholar 

  74. Da Costa GM, Ribeiro-Herzog L (2011) Association between phosphorus and iron oxides in manganese ores. Am Mineral 96:68–73

    Google Scholar 

  75. Huang PM (1975) Retention of arsenic by hydroxy-aluminum on surface of micaceous mineral colloids. Soil Sci Soc Am Proc 39:271–274

    Article  CAS  Google Scholar 

  76. Cappuyns V, Van Herreweghe S, Swennen R, Ottenburgs R, Deckers J (2002) Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). Sci Total Environ 295:217–240

    Article  CAS  Google Scholar 

  77. Woolson EA, Axley JH, Kearney PC (1973) The chemistry and phytotoxicity of arsenic in soils. II Effect of time and phosphorus. Soil Sci Soc Am Proc 37:254–259

    Article  Google Scholar 

  78. Onken BM, Adriano DC (1997) Arsenic availability in soil with time under saturated and subsaturated conditions. Soil Sci Soc Am J 61:746–752

    Article  CAS  Google Scholar 

  79. Kavanagh PJ, Farago ME, Thornton I, Braman RS (1997) Bioavailability of arsenic in soil and mine wastes of the Tamar Valley, SW England. Chem Speciat Bioavailab 9:77–81

    CAS  Google Scholar 

  80. Smith DC, Sacks J, Senior E (1999) Irrigation of soil with synthetic landfill leachate-speciation and distribution of selected pollutants environmental pollution. Environ Pollut 106:429–441, 429

    Article  CAS  Google Scholar 

  81. Abdel-Saheb I, Schwab AP, Banks MK, Hetrick BA (1994) Chemical Characterization of Heavy-Metal Contaminated Soil Transects in Southeast Kansas. Water Air Soil Pollut 78

  82. Canet R, Pomares F, Tarazona F, Estela M (1998) Sequential fractionation and plant availability of heavy metals as affected by sewage sludge. Soil Sci Plant Anal 29:697–716

    Article  CAS  Google Scholar 

  83. McLaren RG, Naidu R, Smith J, Tiller KG (1998) Fractionation and distribution of arsenic in soils contaminated by cattle dip. J Environ Qual 27:348–354

    Article  CAS  Google Scholar 

  84. Daus B, Weiß H, Wennrich R (1998) Arsenic speciation in iron hydroxide precipitates. Talanta 46:867–873

    Article  CAS  Google Scholar 

  85. Mihaljevič M, Poňavič M, Ettler V, Šebek O (2003) A comparison of sequential extraction techniques for determining arsenic fractionation in synthetic mineral mixtures. Anal Bioanal Chem 377:723–729

    Article  Google Scholar 

  86. Chatain V, Bayard R, Sanchez F, Moszkowicz P, Gourdon R (2005) Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions. Environ Int 31:221–226

    Article  CAS  Google Scholar 

  87. Schwertmann U, Cornell R (1991) MIron oxides in the laboratory. Preparation and characterization. VCH-Weinheim, New York

    Google Scholar 

  88. Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombic E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323

    Article  CAS  Google Scholar 

  89. Alvarez R, Ordóñez A, Loredo J (2006) Geochemical assessment of an arsenic mine adjacent to a water reservoir (León, Spain). Environ Geol 50:873–884

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Jorge Loredo’s group from ETS de Ingenieros de Minas of the Universidad de Oviedo for providing the samples and minerals used in this study. The authors are also indebted to the staff of the División de Química of CIEMAT for their continuous assistance in the laboratory work. In addition, the authors would like to thanks the GEOCIMA project (CGL-2006-08192) and the FPI grant awarded to Raquel Larios by CIEMAT as financial support to perform this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Rucandio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larios, R., Fernández-Martínez, R. & Rucandio, I. Comparison of three sequential extraction procedures for fractionation of arsenic from highly polluted mining sediments. Anal Bioanal Chem 402, 2909–2921 (2012). https://doi.org/10.1007/s00216-012-5730-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5730-3

Keywords

Navigation