Skip to main content
Log in

Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Diclofenac is a frequently prescribed drug for rheumatic diseases and muscle pain. In rare cases, it may be associated with a severe hepatotoxicity. In literature, it is discussed whether this toxicity is related to the oxidative phase I metabolism, resulting in electrophilic quinone imines, which can subsequently react with nucleophiles present in the liver in form of glutathione or proteins. In this work, electrochemistry coupled to mass spectrometry is used as a tool for the simulation of the oxidative pathway of diclofenac. Using this purely instrumental approach, diclofenac was oxidized in a thin layer cell equipped with a boron doped diamond working electrode. Sum formulae of generated oxidation products were calculated based on accurate mass measurements with deviations below 2 ppm. Quinone imines from diclofenac were detected using this approach. It could be shown for the first time that these quinone imines do not react with glutathione exclusively but also with larger molecules such as the model protein β-lactoglobulin A. A tryptic digest of the generated drug–protein adduct confirms that the protein is modified at the only free thiol-containing peptide. This simple and purely instrumental set-up offers the possibility of generating reactive metabolites of diclofenac and to assess their reactivity rapidly and easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Helfgott SM, Sandberg-Cook J, Zakim D, Nestler J (1990) JAMA 264:2660–2662

    Article  CAS  Google Scholar 

  2. Stierlin J, Faigle W (1979) Xenobiotica 9:611–621

    Article  CAS  Google Scholar 

  3. Tang W (2003) Curr Drug Metab 4:319–329

    Article  CAS  Google Scholar 

  4. Pumford NR, Myers TG, Davila JC, Highet RJ, Pohl LR (1993) Chem Res Toxicol 6:147–150

    Article  CAS  Google Scholar 

  5. Hargus SJ, Amouzedeh HR, Pumford NR, Myers TG, McCoy SC, Pohl LR (1994) Chem Res Toxicol 7:575–582

    Article  CAS  Google Scholar 

  6. Shen S, Hargus SJ, Martin BM, Pohl LR (1997) Chem Res Toxicol 10:420–423

    Article  CAS  Google Scholar 

  7. Shen S, Marchick MR, Davis MR, Doss GA, Pohl LR (1999) Chem Res Toxicol 12:214–222

    Article  CAS  Google Scholar 

  8. Bort R, Macé K, Boobis A, Gómez-Lechón MJ, Pfeifer A, Castell J (1999) Biochem Pharmacol 58:787–796

    Article  CAS  Google Scholar 

  9. Jurima-Romet M, Crawford K, Huang HS (1994) Toxicol In Vitro 8:55–66

    Article  CAS  Google Scholar 

  10. Kretz-Rommel A, Boelsterli UA (1993) Toxicol Appl Pharmacol 120:155–161

    Article  CAS  Google Scholar 

  11. Zhou S (2003) J Chromatogr B Analyt Technol Biomed Life Sci 797:63–90

    Article  CAS  Google Scholar 

  12. Jurva U, Wikstrom HV, Weidolf L, Bruins AP (2003) Rapid Commun Mass Spectrom 17:800–810

    Article  CAS  Google Scholar 

  13. Lohmann W, Baumann A, Karst U (2010) LC GC Europe 23:1–7

    Google Scholar 

  14. Nouri-Nigjeh E, Bischoff R, Bruins AP, Permentier HP (2011) Curr Drug Metab 12:359–371

    CAS  Google Scholar 

  15. Baumann A, Karst U (2010) Expert Opin Drug Metab Toxicol 6:715–731

    Article  CAS  Google Scholar 

  16. Permentier HP, Bruins AP, Bischoff R (2008) Mini Rev Med Chem 8:46–56

    Article  CAS  Google Scholar 

  17. Zettersten C, Lomoth R, Hammarström L, Sjöberg PJR, Nyholm L (2006) J Electroanal Chem 590:90–99

    Article  CAS  Google Scholar 

  18. Lohmann W, Hayen H, Karst U (2008) Anal Chem 80:9714–9719

    Article  CAS  Google Scholar 

  19. Madsen KG, Skonberg C, Jurva U, Cornett C, Hansen SH, Johansen TN, Olsen J (2008) Chem Res Toxicol 21:1107–1119

    Article  CAS  Google Scholar 

  20. Torii S, Tanaka H (2001) In: Hammerich O, Lund H (eds) Organic electrochemistry, 4th edn. Marcel Dekker, New York

    Google Scholar 

  21. Madsen KG, Olsen J, Skonberg C, Hansen SH, Jurva U (2007) Chem Res Toxicol 20:821–831

    Article  CAS  Google Scholar 

  22. Baumann A, Lohmann W, Schubert B, Oberacher H, Karst U (2009) J Chromatogr A 1216:3192–3198

    Article  CAS  Google Scholar 

  23. Tang W, Stearns RA, Wang RW, Chiu SH, Baillie TA (1999) Chem Res Toxicol 12:192–199

    Article  CAS  Google Scholar 

  24. Dieckhaus CM, Fernandez-Metzler CL, King R, Krolikowski PH, Baillie TA (2005) Chem Res Toxicol 18:630–638

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU, Osnabrück, Germany) is gratefully acknowledged for financial support in form of a Ph.D. scholarship for Helene Faber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Additional information

Published in the special paper collection on Electrochemistry–Mass Spectrometry with guest editors Uwe Karst and Martin Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faber, H., Melles, D., Brauckmann, C. et al. Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry. Anal Bioanal Chem 403, 345–354 (2012). https://doi.org/10.1007/s00216-011-5665-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5665-0

Keywords

Navigation