Skip to main content

Advertisement

Log in

In-line formation and identification of toxic reductive metabolites of aristolochic acid using electrochemistry mass spectrometry coupling

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Small-molecule metabolism has been extensively studied in the past decades, notably driven by the development of new pharmaceutical ingredients. The understanding of metabolism is critical to the anticipation of reactive metabolite formation in vivo that is often associated with toxicity. Electrochemistry has been proposed to simulate the oxidoreductive metabolism reaction catalyzed by cytochrome P450, a family of microsomal enzymes strongly involved in xenobiotic metabolism. The implementation of an electrochemical cell online with mass spectrometry allows for the fast formation and identification of the reaction end products. This study discusses the ability of the synthetic electrochemical approach to simulate a complex lactamization reaction that involves the formation of reactive metabolites. Aristolochic acid I was used as a model molecule to evaluate the ability of electrochemical simulation to generate nitroso, hydroxylamine, N-hydroxylactam, lactam, and nitrenium ion metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol. 2008;21(1):70–83. https://doi.org/10.1021/tx700079z.

    Article  CAS  PubMed  Google Scholar 

  2. Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol. 1991;4(4):391–407. https://doi.org/10.1021/tx00022a001.

    Article  CAS  PubMed  Google Scholar 

  3. Yamazaki H, Shibata A, Suzuki M, Nakajima M, Shimada N, Guengerich FP, Yokoi T. Oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P-450 2C8 and P-450 3A4 in human liver microsomes. Drug Metab Dispos. 1999;27(11):1260.

    CAS  PubMed  Google Scholar 

  4. Patten CJ, Thomas PE, Guy RL, Lee M, Gonzalez FJ, Guengerich FP, Yang CS. Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem Res Toxicol. 1993;6(4):511–8. https://doi.org/10.1021/tx00034a019.

    Article  CAS  PubMed  Google Scholar 

  5. Park BK, Boobis A, Clarke S, Goldring CE, Jones D, Kenna JG, Lambert C, Laverty HG, Naisbitt DJ, Nelson S, Nicoll-Griffith DA, Obach RS, Routledge P, Smith DA, Tweedie DJ, Vermeulen N, Williams DP, Wilson ID, Baillie TA. Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov. 2011;10(4):292–306. https://doi.org/10.1038/nrd3408.

    Article  CAS  PubMed  Google Scholar 

  6. Baillie TA, Pearson PG, Rashed MS, Howald WN. The use of mass spectrometry in the study of chemically-reactive drug metabolises. Application of MS/MS and LC/MS to the analysis of glutathione- and related S-linked conjugates of N-methylformamide. J Pharm Biomed Anal. 1989;7(12):1351–60. https://doi.org/10.1016/0731-7085(89)80140-2.

    Article  CAS  PubMed  Google Scholar 

  7. Jurva U, Wikström HV, Weidolf L, Bruins AP. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions. Rapid Commun Mass Spectrom. 2003;17(8):800–10. https://doi.org/10.1002/rcm.978.

    Article  CAS  PubMed  Google Scholar 

  8. Johansson T, Weidolf L, Jurva U. Mimicry of phase I drug metabolism – novel methods for metabolite characterization and synthesis. Rapid Commun Mass Spectrom. 2007;21(14):2323–31. https://doi.org/10.1002/rcm.3077.

    Article  CAS  PubMed  Google Scholar 

  9. Bussy U, Boujtita M. Advances in the electrochemical simulation of oxidation reactions mediated by cytochrome p450. Chem Res Toxicol. 2014;27(10):1652–68. https://doi.org/10.1021/tx5001943.

    Article  CAS  PubMed  Google Scholar 

  10. Bussy U, Boisseau R, Thobie-Gautier C, Boujtita M. Electrochemistry-mass spectrometry to study reactive drug metabolites and CYP450 simulations. TrAC Trends Anal Chem. 2015;70:67–73. https://doi.org/10.1016/j.trac.2015.02.017.

    Article  CAS  Google Scholar 

  11. Krishnan S, Schenkman JB, Rusling JF. Bioelectronic delivery of electrons to cytochrome P450 enzymes. J Phys Chem B. 2011;115(26):8371–80. https://doi.org/10.1021/jp201235m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nouri-Nigjeh E, Permentier HP, Bischoff R, Bruins AP. Electrochemical oxidation by square-wave potential pulses in the imitation of oxidative drug metabolism. Anal Chem. 2011;83(14):5519–25. https://doi.org/10.1021/ac200897p.

    Article  CAS  PubMed  Google Scholar 

  13. Jahn S, Karst U. Electrochemistry coupled to (liquid chromatography/) mass spectrometry—current state and future perspectives. J Chromatogr A. 2012;1259:16–49. https://doi.org/10.1016/j.chroma.2012.05.066.

    Article  CAS  PubMed  Google Scholar 

  14. Jurva U, Weidolf L. Electrochemical generation of drug metabolites with applications in drug discovery and development. TrAC, Trends Anal Chem. 2015;70:92–9. https://doi.org/10.1016/j.trac.2015.04.010.

    Article  CAS  Google Scholar 

  15. Bussy U, Giraudeau P, Silvestre V, Jaunet-Lahary T, Ferchaud-Roucher V, Krempf M, Akoka S, Tea I, Boujtita M. In situ NMR spectroelectrochemistry for the structure elucidation of unstable intermediate metabolites. Anal Bioanal Chem. 2013;405(17):5817–24. https://doi.org/10.1007/s00216-013-6977-z.

    Article  CAS  PubMed  Google Scholar 

  16. Boisseau R, Bussy U, Giraudeau P, Boujtita M. In situ ultrafast 2D NMR spectroelectrochemistry for real-time monitoring of redox reactions. Anal Chem. 2015;87(1):372–5. https://doi.org/10.1021/ac5041956.

    Article  CAS  PubMed  Google Scholar 

  17. Bussy U, Boujtita M. Review of advances in coupling electrochemistry and liquid state NMR. Talanta. 2015;136:155–60. https://doi.org/10.1016/j.talanta.2014.08.033.

    Article  CAS  PubMed  Google Scholar 

  18. Simon H, Melles D, Jacquoilleot S, Sanderson P, Zazzeroni R, Karst U. Combination of electrochemistry and nuclear magnetic resonance spectroscopy for metabolism studies. Anal Chem. 2012;84(20):8777–82. https://doi.org/10.1021/ac302152a.

    Article  CAS  PubMed  Google Scholar 

  19. Madsen KG, Olsen J, Skonberg C, Hansen SH, Jurva U. Development and evaluation of an electrochemical method for studying reactive phase-I metabolites: correlation to in vitro drug metabolism. Chem Res Toxicol. 2007;20(5):821–31. https://doi.org/10.1021/tx700029u.

    Article  CAS  PubMed  Google Scholar 

  20. Lohmann W, Karst U. Generation and identification of reactive metabolites by electrochemistry and immobilized enzymes coupled on-line to liquid chromatography/mass spectrometry. Anal Chem. 2007;79(17):6831–9. https://doi.org/10.1021/ac071100r.

    Article  CAS  PubMed  Google Scholar 

  21. Bussy U, Chung-Davidson YW, Li K, Li W. Phase I and phase II reductive metabolism simulation of nitro aromatic xenobiotics with electrochemistry coupled with high resolution mass spectrometry. Anal Bioanal Chem. 2014;406(28):7253–60. https://doi.org/10.1007/s00216-014-8171-3.

    Article  CAS  PubMed  Google Scholar 

  22. Bussy U, Chung-Davidson YW, Li K, Li W. A quantitative assay for reductive metabolism of a pesticide in fish using electrochemistry coupled with liquid chromatography tandem mass spectrometry. Environ Sci Technol. 2015;49(7):4450–7. https://doi.org/10.1021/es5057769.

    Article  CAS  PubMed  Google Scholar 

  23. Mali’n TJ, Weidolf L, Castagnoli Jr N, Jurva U. P450-catalyzed vs electrochemical oxidation of haloperidol studied by ultra-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(9):1231–40. https://doi.org/10.1002/rcm.4505.

    Article  CAS  PubMed  Google Scholar 

  24. Han J, Xian Z, Zhang Y, Liu J, Liang A. Systematic overview of aristolochic acids: nephrotoxicity, carcinogenicity, and underlying mechanisms. Front Pharmacol. 2019;10(648). https://doi.org/10.3389/fphar.2019.00648.

  25. Vanherweghem JL, Tielemans C, Abramowicz D, Depierreux M, Vanhaelen-Fastre R, Vanhaelen M, Dratwa M, Richard C, Vandervelde D, Verbeelen D, Jadoul M. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. The Lancet. 1993;341(8842):387–91. https://doi.org/10.1016/0140-6736(93)92984-2.

    Article  CAS  Google Scholar 

  26. Krumbiegel G, Hallensleben J, Mennicke WH, Rittmann N, Roth HJ. Studies on the metabolism of aristolochic acids I and II. Xenobiotica. 1987;17(8):981–91. https://doi.org/10.3109/00498258709044197.

    Article  CAS  PubMed  Google Scholar 

  27. Rendic SP, Guengerich FP. Human Family 1–4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol. 2021;95(2):395–472. https://doi.org/10.1007/s00204-020-02971-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chan W, Cui L, Xu G, Cai Z. Study of the phase I and phase II metabolism of nephrotoxin aristolochic acid by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(11):1755–60. https://doi.org/10.1002/rcm.2513.

    Article  CAS  PubMed  Google Scholar 

  29. Pfau W, Schmeiser HH, Wiessler M. Aristolochic acid binds covalently to the exocyclic amino group of purine nucleotides in DNA. Carcinogenesis. 1990;11(2):313–9. https://doi.org/10.1093/carcin/11.2.313.

    Article  CAS  PubMed  Google Scholar 

  30. Stiborová M, Hudeček J, Frei E, Schmeiser H. Contribution of biotransformation enzymes to the development of renal injury and urothelial cancer caused by aristolochic acid: urgent questions, difficult answers. Interdiscip Toxicol. 2010;1(1):8–12. https://doi.org/10.2478/v10102-010-0023-1.

    Article  Google Scholar 

  31. Clark WF, Garg AX. Plasma exchange for myeloma kidney: cast(s) away? Kidney Int. 2008;73(11):1211–3. https://doi.org/10.1038/ki.2008.117.

    Article  CAS  PubMed  Google Scholar 

  32. Wirtanen T, Rodrigo E, Waldvogel SR. Recent advances in the electrochemical reduction of substrates involving N−O bonds. Adv Synth Catal. 2020;362(11):2088–101. https://doi.org/10.1002/adsc.202000349.

    Article  Google Scholar 

  33. Sidorenko VS, Attaluri S, Zaitseva I, Iden CR, Dickman KG, Johnson F, Grollman AP. Bioactivation of the human carcinogen aristolochic acid. Carcinogenesis. 2014;35(8):1814–22. https://doi.org/10.1093/carcin/bgu095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zanoni MVB, Rogers EI, Hardacre C, Compton RG. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids. Anal Chim Acta. 2010;659(1):115–21. https://doi.org/10.1016/j.aca.2009.11.026.

    Article  CAS  PubMed  Google Scholar 

  35. Takamura-Enya T, Suzuki H, Hisamatsu Y. Mutagenic activities and physicochemical properties of selected nitrobenzanthrones. Mutagenesis. 2006;21(6):399–404. https://doi.org/10.1093/mutage/gel045.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

UB conceptualized the research, contributed to the data interpretation, and drafted the manuscript. RB ran the experiments, contributed to the conceptualization of research, interpreted the data, and contributed to manuscript writing. MC contributed to experiment and data interpretation. RT contributed to manuscript writing. MB contributed to research conceptualization, supervised research, and contributed to writing.

Ethics declarations

Conflict of interest

UB is currently employed by Mars Incorporated. All the other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussy, U., Boisseau, R., Croyal, M. et al. In-line formation and identification of toxic reductive metabolites of aristolochic acid using electrochemistry mass spectrometry coupling. Anal Bioanal Chem 414, 2363–2370 (2022). https://doi.org/10.1007/s00216-022-03874-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03874-2

Keywords

Navigation