Skip to main content
Log in

Development of a routine method for the simultaneous confirmation and determination of clenbuterol in urine by minimal labeling isotope pattern deconvolution and GC-EI-MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel and fast routine method for the simultaneous determination and confirmation of clenbuterol in bovine and human urine samples by gas chromatography electron ionization mass spectrometry (GC-EI-MS) has been developed. The method employs isotope dilution mass spectrometry (IDMS) and is based on a combination of minimal labeling (a single 13C label in the molecule) and isotope pattern deconvolution (IPD). This new methodology does not require the construction of a methodological calibration graph, and was compared with the classical IDMS procedure employed in clenbuterol analysis based on the use of a deuterated compound as internal standard (d9-clenbuterol) and a calibration curve. The sample preparation consists of simple extraction with dichloromethane, which was dried and derivatized with chloro(chloromethyl)dimethylsilane, generating a cyclic dimethylsilamorpholine (DMS) derivative suitable for GC(EI)MS detection and identification. This compound produces five intense ions in the electron ionization source, which allow the presence of clenbuterol to be confirmed in just one analysis, as demanded by European Union directives. The accuracy of the method was studied by performing recovery experiments at different concentration levels (from 0.3 to 5 ng g−1) in 5 mL bovine urine samples using two labeled compounds: an in-house-synthesized 13C1-clenbuterol and a commercially available d9-clenbuterol. The detection limit of the method in human urine was 0.050 ng g−1 with a sample volume of 10 mL, and is thus suitable for antidoping control purposes. Finally, the 13C1-clenbuterol standard was employed for the determination of clenbuterol in two reference materials, BCR-503 and BCR-504 (lyophilized bovine urine). The concentrations obtained were in agreement with the certified values, with a reproducibility of below 1% RSD.

A procedure for the determination and confirmation of clenbuterol in bovine and human urine samples by gas chromatography electron ionization mass spectrometry has been developed. In this method IDMS is employed in combination with minimal labelling and isotope pattern deconvolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boyd D, O’Keeffe M, Smyth MR (1996) Analyst 121:1R–10R

    Article  CAS  Google Scholar 

  2. Polettini A (1996) J Chromatogr B 687:27–42

    Article  CAS  Google Scholar 

  3. Van Eenoo P, Delbeke FT, Deprez P (2002) Biomed Chromatogr 16:475–481

    Article  Google Scholar 

  4. Huenerbein A, Marques MAS, dos Santos Pereira A, Radler de Aquino Neto F (2003) J Chromatogr A 985:375–386

    Article  CAS  Google Scholar 

  5. Cristino A, Ramos F, da Silveira MIN (2003) J Pharm Biomed Anal 32:311–316

    Article  CAS  Google Scholar 

  6. Ramos F, Cristino A, Carrola P, Eloy T, Silva JM, Castilho MC, da Silveira MIN (2003) Anal Chim Acta 483:207–213

    Article  CAS  Google Scholar 

  7. Zhao L, Zhao J, Huangfu WG, Wu YL (2010) Chromatographia 72:365–368

    Article  CAS  Google Scholar 

  8. Pinhero I, Jesuino B, Barbosa J, Ferreira H, Ramos F, Matos J, Noronha Silveira M (2009) J Agric Food Chem 57:910–914

    Article  Google Scholar 

  9. Montrade MP, Le Bizec B, Monteau F, Siliart B, Andre F (1993) Anal Chim Acta 275:253–268

    Article  CAS  Google Scholar 

  10. Parr MK, Koehler K, Geyer H, Guddat S, Schänzer W (2008) Biomed Chromatogr 22:298–300

    Article  CAS  Google Scholar 

  11. Ramos F, Bañobre MC, Castilho MC, da Silveira MIN (1999) J Liq Chrom Rel Technol 22:2307–2320

    Google Scholar 

  12. He P, Wang Z, Zhang L, Yang W (2009) Food Chem 112:707–714

    Article  CAS  Google Scholar 

  13. Moane S, Smyth MR, O’Keeffe M (1996) Analyst 121:779–784

    Article  CAS  Google Scholar 

  14. Liu J, Zeng L, Li Z, Gao F, Huang X, Li F, Lin H (2009) Anal Chim Acta 638:69–74

    Article  CAS  Google Scholar 

  15. Li C, Wu YL, Yang T, Zhang Y, Huang-Fu WG (2010) J Chromatogr A 1217:7873–7877

    Article  CAS  Google Scholar 

  16. Hernández-Carrasquilla M (2000) Anal Chim Acta 408:285–290

    Article  Google Scholar 

  17. Dumasia MC, Houghton E (1991) J Chromatogr 564:503–513

    Article  CAS  Google Scholar 

  18. Melwanki MB, Hsu W-H, Huang S-D (2005) Anal Chim Acta 552:67–75

    Google Scholar 

  19. Reig M, Batle N, Navarro JL, Toldrá F (2005) Anal Chim Acta 529:293–297

    Article  CAS  Google Scholar 

  20. Wang L, Yuan-Quian L, Zhou YK, Yuan Y (2010) Chromatographia 71:737–739

    Article  CAS  Google Scholar 

  21. Engelman MD, Hinz D, Wenclawiak BW (2003) Anal Bioanal Chem 375:460–464

    Google Scholar 

  22. Batjoens P, Courtheyn D, De Branbander HF, Vercammen J, De Wasch K, Logghe M (1996) J Chromatogr 750:133–139

    Article  CAS  Google Scholar 

  23. De Leenheer AP, Thienpont M (1992) Mass Spectrom Rev 11:249–307

    Article  Google Scholar 

  24. Rodríguez-González P, Marchante-Gayón JM, García Alonso JI, Sanz-Medel A (2005) Spectrochim Acta Part B 60:151–207

    Article  Google Scholar 

  25. Rychlik M, Asam S (2008) Anal Bioanal Chem 390:617–628

    Article  CAS  Google Scholar 

  26. Itoh N, Numata M, Yarita T (2007) Anal Sci 23:1245–1248

    Article  CAS  Google Scholar 

  27. Itoh N, Numata M, Aoyagi Y, Yarita T (2007) J Chromatogr A 1138:26–31

    Article  CAS  Google Scholar 

  28. Wieling J (2002) Chromatographia 55:S107–S113

    Article  CAS  Google Scholar 

  29. Stokvis E, Rosing H, Beijnen JH (2005) Rapid Commun Mass Spectrom 19:401–407

    Article  CAS  Google Scholar 

  30. Wade D (1999) Chem-Biol Interact 117:191–217

    Google Scholar 

  31. Edegger K, Gruber CC, Poessl TM, Wallner SR, Lavandera I, Faber K, Niehaus F, Eck J, Oehrlein R, Hafner A, Kroutil W (2006) Chem Commun 2402–2404

  32. González-Antuña A, Rodríguez-González P, Centineo G, García Alonso JI (2010) Analyst 135:953–964

    Article  Google Scholar 

  33. Jonckheere JA, De Leenheer P, Steyaert HL (1983) Anal Chem 55:153–155

    Article  CAS  Google Scholar 

  34. Sabot J, Pinatel H (1993) Analyst 118:831–834

    Article  CAS  Google Scholar 

  35. Lambert JB, Shurvell HF, Lightner D, Cooks RG (1987) Introduction to organic spectroscopy. Macmillan, New York

  36. Meija J, Caruso JA (2004) J Am Soc Mass Spectrom 15:654–658

    Article  CAS  Google Scholar 

  37. Meija J, Centineo G, García Alonso JI, Sanz-Medel A, Caruso JA (2005) J Mass Spectrom 40:807–814

    Article  CAS  Google Scholar 

  38. García Alonso JI, Rodríguez-González P, González-Gago A, González-Antuña A (2010) Anal Chim Acta 664:68–76

    Article  Google Scholar 

  39. Kubinyi H (1991) Anal Chim Acta 247:107–119

    Article  CAS  Google Scholar 

  40. González-Gago A, Marchante-Gayón JM, Ferrero M, García Alonso JI (2010) Anal Chem 82:2879–2887

    Article  Google Scholar 

  41. González-Antuña A, Lavandera I, Rodríguez-González P, Rodríguez J, García Alonso JI, Gotor V (2011) Tetrahedron 67:5577–5581

    Article  Google Scholar 

  42. Garcia Alonso JI (1995) Anal Chim Acta 312:57–78

    Article  Google Scholar 

  43. Aresta A, Calvano CD, Palmisano F, Zambonin CG (2008) J Pharm Biomed Anal 47:641–645

    Article  CAS  Google Scholar 

  44. Thevis M, Schebalkin T, Thomas A, Schänzer W (2005) Chromatographia 62:435–439

    Article  CAS  Google Scholar 

  45. Melwanki MB, Huang S-D, Fuh M-R (2007) Talanta 72:373–377

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Spanish Ministry of Science and Innovation through project refs. CTQ2009-12814 and CTQ2007-61126/PPQ. A.G.-A. acknowledges her doctoral grant to FICYT (Asturias). P.R.-G. and I.L. acknowledge their research contracts from the Spanish Ministry of Science and Innovation through the Ramón y Cajal Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio García Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Antuña, A., Rodríguez-González, P., Lavandera, I. et al. Development of a routine method for the simultaneous confirmation and determination of clenbuterol in urine by minimal labeling isotope pattern deconvolution and GC-EI-MS. Anal Bioanal Chem 402, 1879–1888 (2012). https://doi.org/10.1007/s00216-011-5611-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5611-1

Keywords

Navigation