Skip to main content
Log in

Stable isotope dilution assays in mycotoxin analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC–MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Soddy F (1913) Nature 92:399–400

    Article  Google Scholar 

  2. Hevesy G, Paneth F (1913) Z Anorg Chem 82:323–328

    Article  Google Scholar 

  3. Aston FW (1919) Nature 104:334

    Article  CAS  Google Scholar 

  4. Boni RL, Simpson JT, Naritsin DB, Saito K, Markey SP (1994) Biol Mass Spectrom 23:27–32

    Article  CAS  Google Scholar 

  5. Price KR (1979) Biomed Mass Spectrom 6:573–574

    Article  CAS  Google Scholar 

  6. Jonckheere JA, Leenheer APD (1983) Anal Chem 55:153–155

    Article  CAS  Google Scholar 

  7. Sabot J-F, Pinatel H (1993) Analyst 118:831–834

    Article  CAS  Google Scholar 

  8. Fay LB, Metairon S, Baumgartner M (2001) Flavour Fragr J 16:164–168

    Article  CAS  Google Scholar 

  9. Bretz M, Beyer M, Cramer B, Humpf H-U (2006) Mol Nutr Food Res 50:251–260

    Article  CAS  Google Scholar 

  10. Moss MO, Thrane U (2004) Toxicol Lett 153:23–28

    Article  CAS  Google Scholar 

  11. Schrodter R (2004) Toxicol Lett 153:47–49

    Article  CAS  Google Scholar 

  12. Ueno Y, Nakajima M, Sakai K, Ishii K, Sato N, Shimada N (1973) J Biochem 74:285–296

    CAS  Google Scholar 

  13. Schollenberger M, Muller H-M, Rufle M, Suchy S, Planck S, Drochner W (2005) Int J Food Microbiol 97:317–326

    Article  CAS  Google Scholar 

  14. Pawlosky RJ, Mirocha CJ, Wen Y, Abbas HK (1989) J Assoc Off Anal Chem 72:807–812

    CAS  Google Scholar 

  15. Razzazi-Fazeli E, Rabus B, Cecon B, Bohm J (2002) J Chromatogr A 968:129–142

    Article  CAS  Google Scholar 

  16. Asam S, Rychlik M (2006) J Agric Food Chem 54:6535–6546

    Article  CAS  Google Scholar 

  17. Hädrich J, Vogelgesang J (1999) Dtsch Lebensm Rundsch 95:428–436

    Google Scholar 

  18. Bretz M, Beyer M, Cramer B, Humpf H-U (2005) Mol Nutr Food Res 49:1151–1153

    Article  CAS  Google Scholar 

  19. Häubl G, Berthiller F, Rechthaler J, Jaunecker G, Binder EM, Krska R, Schuhmacher R (2006) Food Addit Contam 23:1187–1193

    Article  Google Scholar 

  20. Häubl G, Berthiller F, Krska R, Schuhmacher R (2006) Anal Bioanal Chem 384:692–696

    Article  Google Scholar 

  21. Asam S, Rychlik M (2006) Eur Food Res Technol 224:769–783

    Article  Google Scholar 

  22. Shier WT, Shier AC, Xie W, Mirocha CJ (2001) Toxicon 39:1435–1438

    Article  CAS  Google Scholar 

  23. Munoz L, Riguera R (1990) Magn Reson Chem 28:665–667

    Article  CAS  Google Scholar 

  24. Miles CO, Erasmuson AF, Wilkins AL, Towers NR, Smith BL, Garthwaite I, Scahill BG, Hansen RP (1996) J Agric Food Chem 44:3244–3250

    Article  CAS  Google Scholar 

  25. Zoellner P, Jodlbauer J, Kleinova M, Kahlbacher H, Kuhn T, Hochsteiner W, Lindner W (2002) J Agric Food Chem 50:2494–2501

    Article  CAS  Google Scholar 

  26. Songsermsakul P, Sontag G, Cichna-Markl M, Zentek J, Razzazi-Fazeli E (2006) J Chromatogr B 843:252–261

    Article  CAS  Google Scholar 

  27. Launay FM, Young PB, Sterk SS, Blokland MH, Kennedy DG (2004) Food Addit Contam 21:52–62

    Article  CAS  Google Scholar 

  28. Hartmann N, Erbs M, Wettstein FE, Schwarzenbach RP, Bucheli TD (2007) J Chromatogr A 1138:132–140

    Article  CAS  Google Scholar 

  29. Sforza S, Dall'Asta C, Moseriti A, Galaverna G, Dossena A, Marchelli R (2005) Angew Chem Int Ed 44:5126–5130

    Article  CAS  Google Scholar 

  30. Marasas WFO (2001) Environ Health Perspect Suppl 109:239–243

    Article  CAS  Google Scholar 

  31. Marasas WFO, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer SA, Cabrera J, Torres O, Gelderblom WCA, Allegood J, Martinez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AHJ (2004) J Nutr 134:711–716

    CAS  Google Scholar 

  32. Plattner RD, Shackelford DD (1992) Mycopathologia 117:17–22

    Article  CAS  Google Scholar 

  33. Plattner RD, Branham BE (1994) JAOAC Int 77:525–532

    CAS  Google Scholar 

  34. Lukacs Z, Schaper S, Herderich M, Schreier P, Humpf H-U (1996) Chromatographia 43:124–128

    Article  CAS  Google Scholar 

  35. Hartl M, Herderich M, Humpf HU (1999) Eur Food Res Technol 209:348–351

    Article  CAS  Google Scholar 

  36. Hartl M, Humpf HU (1999) J Agric Food Chem 47:5078–5083

    Article  CAS  Google Scholar 

  37. Seefelder W, Hartl M, Humpf H-U (2001) J Agric Food Chem 49:2146–2151

    Article  CAS  Google Scholar 

  38. Seefelder W, Gossmann M, Humpf H-U (2002) J Agric Food Chem 50:2778–2781

    Article  CAS  Google Scholar 

  39. Becci PJ, Hess FG, Johnson WD, Gallo MA, Babish JG, Dailey RE, Parent RA (1981) J Appl Toxicol 1:256–261

    Article  CAS  Google Scholar 

  40. Dickens F, Jones HEH (1961) Br J Cancer 15:85–100

    CAS  Google Scholar 

  41. AOAC (1997) Official Methods of Analysis of AOAC International 16th edn. AOAC International; Gaithersburg, Maryland, Method 995.10

  42. Sewram V, Nair JJ, Nieuwoudt TW, Leggott NL, Shephard GS (2000) J Chromatogr A 897:365–374

    Article  CAS  Google Scholar 

  43. Takino M, Daishima S, Nakahara T (2003) Rapid Commun Mass Spectrom 17:1965–1972

    Article  CAS  Google Scholar 

  44. Roach JAG, White KD, Trucksess MW, Thomas FS (2000) J AOAC Int 83:104–112

    CAS  Google Scholar 

  45. Ralls JW, Lane RM (1977) J Food Sci 42:1117–1119

    Article  CAS  Google Scholar 

  46. Suzuki T, Fujimoto Y, Hoshino Y, Tanaka A (1974) Agric Biol Chem 38:1259–1260

    CAS  Google Scholar 

  47. Tarter EJ, Scott PM (1991) J Chromatography 538:441–446

    Article  CAS  Google Scholar 

  48. Rychlik M, Schieberle P (1998) J Agric Food Chem 46:5163–5169

    Article  CAS  Google Scholar 

  49. Rychlik M, Schieberle P (1999) J Agric Food Chem 47:3749–3755

    Article  CAS  Google Scholar 

  50. Ito R, Yamazaki H, Inoue K, Yoshimura Y, Kawaguchi M, Nakazawa H (2004) J Agric Food Chem 52:7464–7468

    Article  CAS  Google Scholar 

  51. Coring systems, http:www.coring.de

  52. Osswald H, Frank HK, Komitowski D, Winter H (1978) Food Cosmet Toxicol 16:243–247

    Article  CAS  Google Scholar 

  53. Rychlik M, Kircher F, Schusdziarra V, Lippl F (2004) Food Chem Toxicol 42:729–735

    Article  CAS  Google Scholar 

  54. Rychlik M (2003) Food Addit Contam 20:829–837

    Article  CAS  Google Scholar 

  55. Fliege R, Metzler M (2000) Chem Res Toxicol 13:373–381

    Article  CAS  Google Scholar 

  56. Rychlik M (2005) Ernaehrung 29:61–68

    CAS  Google Scholar 

  57. Kuiper-Goodman T, Scott PM (1989) Biomed Environ Sci 2:179–248

    CAS  Google Scholar 

  58. Hult K, Plestina R, Habazin-Novak V, Radic B, Ceovic S (1982) Arch Toxicol 51:313–321

    Article  CAS  Google Scholar 

  59. EC directive (2006) 1881/2006

  60. Märtlbauer E, Terplan G (1988) Arch Lebensm Hyg 39:133–156

    Google Scholar 

  61. Losito I, Monaci L, Palmisano F, Tantillo G (2004) Rap Commun Mass Spectrom 18:1965–1971

    Article  CAS  Google Scholar 

  62. Goryacheva IY, De Saeger S, Lobeau M, Eremin SA, Barna-Vetro I, Van Peteghem C (2006) Anal Chim Acta 577:38–45

    Article  CAS  Google Scholar 

  63. Reinsch M, Toepfer A, Lehmann A, Nehls I, Panne U (2006) Food Chem 100:312–317

    Article  Google Scholar 

  64. Jorgensen K, Vahl M (1999) Food Addit Contam 16:451–456

    Article  CAS  Google Scholar 

  65. Lindenmeier M, Schieberle P, Rychlik M (2004) J Chromatogr A 1023:57–66

    Article  CAS  Google Scholar 

  66. Biopure reference compounds, http:www.biopure.at

  67. Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Rap Commun Mass Spectrom 20:2649–2659

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rychlik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rychlik, M., Asam, S. Stable isotope dilution assays in mycotoxin analysis. Anal Bioanal Chem 390, 617–628 (2008). https://doi.org/10.1007/s00216-007-1717-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1717-x

Keywords

Navigation