Skip to main content
Log in

Elucidating the role of select cytoplasmic proteins in altering diffusion of integrin receptors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cytoplasmic proteins that affect integrin diffusion in the cell membrane are identified using a combination of fluorescence recovery after photobleaching (FRAP) and RNA interference. Integrin receptors are essential for many cellular events, and alterations in lateral diffusion are one mechanism for modulating their function. In cells expressing native cytoplasmic protein concentrations and spread on a slide containing integrin extracellular ligand, 45 ± 2% of the integrin is mobile with a time-dependent 5.2 ± 0.9 × 10−9 cm2/s diffusion coefficient at 1 s. The time exponent is 0.90 ± 0.07, indicating integrin diffusion moderately slows at longer times. The role of a specific cytoplasmic protein in altering integrin diffusion is revealed through changes in the FRAP curve after reducing the cytoplasmic protein’s expression. Decreased expression of cytoplasmic proteins rhea, focal adhesion kinase (FAK), or steamer duck decreases the integrin mobile fraction. For rhea and FAK, there is a concomitant shift to Brownian (i.e., time-independent) diffusion at reduced concentrations of these proteins. In contrast, when the expression of actin 42A, dreadlocks, paxillin, integrin-linked kinase (ILK), or vinculin is reduced, integrin diffusion generally becomes more constrained with an increase in the integrin mobile fraction. This same change in integrin diffusion is measured in the absence of integrin extracellular ligand. The results indicate breaking the extracellular ligand–integrin–cytoskeletal linkage alters integrin diffusion properties, and, in most cases, there is no correlation between integrin and lipid diffusion properties.

Schematic of a cell membrane depicting the interaction of integrin receptors with cytoplasmic proteins. Fluorescence recovery after photobleaching was used to measure diffusion properties of integrins before (black curve) and after (blue curve) reducing the expression of specific cytoplasmic proteins via RNA interference

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hughes PE, O’Toole TE, Ylanne J, Shattil SJ, Ginsberg MH (1995) The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J Biol Chem 270(21):12411–12417

    Article  CAS  Google Scholar 

  2. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032

    Article  CAS  Google Scholar 

  3. Ginsberg MH, Partridge A, Shattil SJ (2005) Integrin regulation. Curr Opin Cell Biol 17(5):509–516

    Article  CAS  Google Scholar 

  4. Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci U S A 72(8):3111–3113

    Article  CAS  Google Scholar 

  5. Jackson MB (2006) Molecular and cellular biophysics. Cambridge University Press, New York

    Book  Google Scholar 

  6. Peters R, Cherry RJ (1982) Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbruck equations. Proc Natl Acad Sci U S A 79(14):4317–4321

    Article  CAS  Google Scholar 

  7. Jacobson K, Ishihara A, Inman R (1987) Lateral diffusion of proteins in membranes. Annu Rev Physiol 49:163–175

    Article  CAS  Google Scholar 

  8. Kucik DF, Elson EL, Sheetz MP (1999) Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion. Biophys J 76(1):314–322

    Article  CAS  Google Scholar 

  9. Sheetz MP, Schindler M, Koppel DE (1980) Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 285(5765):510–511

    Article  CAS  Google Scholar 

  10. Koehler DR, Sajjan U, Chow YH, Martin B, Kent G, Tanswell AK, McKerlie C, Forstner JF, Hu J (2003) Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia. Proc Natl Acad Sci U S A 100(26):15364–15369

    Article  CAS  Google Scholar 

  11. Kahya N, Schwille P (2006) How phospholipid–cholesterol interactions modulate lipid lateral diffusion, as revealed by fluorescence correlation spectroscopy. J Fluoresc 16(5):671–678

    Article  CAS  Google Scholar 

  12. Chen Y, Lagerholm BC, Yang B, Jacobson K (2006) Methods to measure the lateral diffusion of membrane lipids and proteins. Methods 39(2):147–153

    Article  Google Scholar 

  13. Reits EA, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3(6):E145–E147

    Article  CAS  Google Scholar 

  14. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069

    Article  CAS  Google Scholar 

  15. van Zoelen EJ, Tertoolen LG, de Laat SW (1983) Simple computer method for evaluation of lateral diffusion coefficients from fluorescence photobleaching recovery kinetics. Biophys J 42(1):103–108

    Article  Google Scholar 

  16. Gordon GW, Chazotte B, Wang XF, Herman B (1995) Analysis of simulated and experimental fluorescence recovery after photobleaching. Data for two diffusing components. Biophys J 68(3):766–778

    Article  CAS  Google Scholar 

  17. Wehrle-Haller B (2007) Analysis of integrin dynamics by fluorescence recovery after photobleaching. Methods Mol Biol 370:173–202

    Article  CAS  Google Scholar 

  18. Sancey L, Garanger E, Foillard S, Schoehn G, Hurbin A, Albiges-Rizo C, Boturyn D, Souchier C, Grichine A, Dumy P, Coll JL (2009) Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide. Mol Ther 17(5):837–843

    Article  CAS  Google Scholar 

  19. Kiger AA, Baum B, Jones S, Jones MR, Coulson A, Echeverri C, Perrimon N (2003) A functional genomic analysis of cell morphology using RNA interference. J Biol 2(4):27

    Article  CAS  Google Scholar 

  20. Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, Haas SA, Paro R, Perrimon N (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303(5659):832–835

    Article  CAS  Google Scholar 

  21. Agaisse H, Burrack LS, Philips JA, Rubin EJ, Perrimon N, Higgins DE (2005) Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 309(5738):1248–1251

    Article  CAS  Google Scholar 

  22. Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, Guizzunti G, Hu Y, Wendler F, Dasgupta R, Perrimon N, Malhotra V (2006) Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439(7076):604–607

    Article  CAS  Google Scholar 

  23. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114(Pt 20):3583–3590

    CAS  Google Scholar 

  24. Legate KR, Montanez E, Kudlacek O, Fassler R (2006) ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev 7(1):20–31

    Article  CAS  Google Scholar 

  25. Wu C (1999) Integrin-linked kinase and PINCH: partners in regulation of cell–extracellular matrix interaction and signal transduction. J Cell Sci 112(Pt 24):4485–4489

    CAS  Google Scholar 

  26. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215

    Article  Google Scholar 

  27. Brower DL (2003) Platelets with wings: the maturation of Drosophila integrin biology. Curr Opin Cell Biol 15(5):607–613

    Article  CAS  Google Scholar 

  28. Bunch TA, Grinblat Y, Goldstein LS (1988) Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res 16(3):1043–1061

    Article  CAS  Google Scholar 

  29. Bunch TA, Helsten TL, Kendall TL, Shirahatti N, Mahadevan D, Shattil SJ, Brower DL (2006) Amino acid changes in Drosophila alphaPS2betaPS integrins that affect ligand affinity. J Biol Chem 281(8):5050–5057

    Article  CAS  Google Scholar 

  30. Graner MW, Bunch TA, Baumgartner S, Kerschen A, Brower DL (1998) Splice variants of the Drosophila PS2 integrins differentially interact with RGD-containing fragments of the extracellular proteins tiggrin, ten-m, and D-laminin 2. J Biol Chem 273(29):18235–18241

    Article  CAS  Google Scholar 

  31. Dibya D, Sander S, Smith EA (2009) Identifying cytoplasmic proteins that affect receptor clustering using fluorescence resonance energy transfer and RNA interference. Anal Bioanal Chem 395(7):2303–2311

    Article  CAS  Google Scholar 

  32. Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97(12):6499–6503

    Article  CAS  Google Scholar 

  33. March JC, Bentley WE (2006) Engineering eukaryotic signal transduction with RNAi: enhancing Drosophila S2 cell growth and recombinant protein synthesis via silencing of TSC1. Biotechnol Bioeng 95(4):645–652

    Article  CAS  Google Scholar 

  34. FLIGHT. http://flight.licr.org/

  35. PeptideAtlas. www.mop.unizh.ch/peptideatlas

  36. Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WW (1996) Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 70(6):2767–2773

    Article  CAS  Google Scholar 

  37. Pfaffl M (2009) Rest 2009. http://www.gene-quantification.de/rest-2009.html

  38. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  Google Scholar 

  39. Owen DM, Williamson D, Rentero C, Gaus K (2009) Quantitative microscopy: protein dynamics and membrane organisation. Traffic (Copenhagen, Denmark) 10(8):962–971

    Article  CAS  Google Scholar 

  40. Heidelberg. http://www.genomernai.de/genomeRNAi

  41. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323):580–584

    Article  CAS  Google Scholar 

  42. Helsten TL, Bunch TA, Kato H, Yamanouchi J, Choi SH, Jannuzi AL, Feral CC, Ginsberg MH, Brower DL, Shattil SJ (2008) Differences in regulation of Drosophila and vertebrate integrin affinity by talin. Mol Biol Cell 19(8):3589–3598

    Article  CAS  Google Scholar 

  43. Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP (2008) Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol 10(9):1062–1068

    Article  CAS  Google Scholar 

  44. Garg S, Tang JX, Ruhe J, Naumann CA (2009) Actin-induced perturbation of PS lipid-cholesterol interaction: a possible mechanism of cytoskeleton-based regulation of membrane organization. J Struct Biol 168(1):11–20

    Article  CAS  Google Scholar 

  45. Decker L, Baron W, Ffrench-Constant C (2004) Lipid rafts: microenvironments for integrin-growth factor interactions in neural development. Biochem Soc Trans 32(Pt3):426–430

    Article  CAS  Google Scholar 

  46. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329(5991):533–538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by National Science Foundation (CHE-0845236) and the Roy J. Carver Charitable Trust (Muscatine IA). The authors thank A. Miyawaki (Riken, Wako-city, Saitama, Japan) for the original Venus plasmid and Cory Lanker (Iowa State University, Department of Statistics) for help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily A. Smith.

Additional information

Published in the special issue Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, J. Bettmer, T. Hasegawa, Q. Wang, and Y. Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.34 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sander, S., Arora, N. & Smith, E.A. Elucidating the role of select cytoplasmic proteins in altering diffusion of integrin receptors. Anal Bioanal Chem 403, 2327–2337 (2012). https://doi.org/10.1007/s00216-011-5603-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5603-1

Keywords

Navigation