Skip to main content
Log in

Solvent-free microextraction techniques in gas chromatography

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microextraction techniques represent a major part of modern sample preparation in the analysis of organic micropollutants. This article provides a short overview of recent developments in solvent-free microextraction techniques. From the first open-tubular trap techniques in the mid-1980s to recent packed-needle devices, different implementations of in-needle packings for microextraction are discussed with their characteristic benefits, shortcomings and possible sampling modes. Special emphasis is placed on methods providing full automation and solvent exclusion. In this context, in-tube extraction and the needle trap are discussed, with an overview of current research on new sorbent materials, together with the requirements for more efficient method development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Koning S, Janssen HG, Brinkman UAT (2009) Chromatographia 69(1):33–78

    Article  Google Scholar 

  2. Smith RM (2003) J Chromatogr A 1000(1–2):3–27

    Article  CAS  Google Scholar 

  3. Pawliszyn J (2003) Anal Chem 75(11):2543–2558. doi:10.1021/ac034094h

    Article  CAS  Google Scholar 

  4. Noble D (1993) Anal Chem 65(15):693A–695A. doi:10.1021/ac00063a002

    Article  CAS  Google Scholar 

  5. David F, Van Hoeck E, Sandra P (2007) Anal Bioanal Chem 387(1):141–144. doi:10.1007/s00216-006-0721-x

    Article  CAS  Google Scholar 

  6. Nerín C, Salafranca J, Aznar M, Batlle R (2009) Anal Bioanal Chem 393(3):809–833

    Article  Google Scholar 

  7. Lord HL, Pawliszyn J (1998) LC GC 16(5 Suppl):S41–S46

    Google Scholar 

  8. Grob K, Habich A (1985) J Chromatogr A 321:45–58

    Article  CAS  Google Scholar 

  9. van Pinxteren M, Paschke A, Popp P (2010) J Chromatogr A 1217(16):2589–2598

    Article  Google Scholar 

  10. Fontanals N, Marce RM, Borrull F (2007) J Chromatogr A 1152(1–2):14–31

    Article  CAS  Google Scholar 

  11. Kataoka H, Ishizaki A, Nonaka Y, Saito K (2009) Anal Chim Acta 655(1–2):8–29

    Article  CAS  Google Scholar 

  12. Lord H, Pawliszyn J (2000) J Chromatogr A 885(1–2):153–193

    Article  CAS  Google Scholar 

  13. Ridgway K, Lalljie SPD, Smith RM (2007) J Chromatogr A 1153(1–2):36–53

    Article  CAS  Google Scholar 

  14. Burger BV, Munro Z (1986) J Chromatogr A 370:449–464

    Article  CAS  Google Scholar 

  15. Belardi RP, Pawliszyn JB (1989) Water Pollut Res J Can 24(1)

  16. Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley-VCH, New York

    Google Scholar 

  17. Pawliszyn J (1999) Applications of solid phase microextraction. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  18. Pawliszyn J (2002) Sampling and sample preparation for field and laboratory: fundamentals and new directions in sample preparation. Elsevier, Amsterdam

    Google Scholar 

  19. Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Anal Bioanal Chem 393:781–795

    Article  CAS  Google Scholar 

  20. DIN Deutsches Institut für Normung (2006) German standard methods for the examination of water, waste water and sludge - jointly determinable substances (group F) - part 34: determination of selected plant treatment agents, biocides and break-down products; method using gas chromatography (GC-MS) after solid-phase micro extraction (SPME) (F 34). DIN 38407–34. Beuth, Berlin

  21. Environmental Protection Agency (2007) Parent and alkyl polycyclic aromatics in sediment pore water by solid-phase microextraction and gas chromatography/mass spectrometry in selected ion monitoring mode. Method 8272. Environmental Protection Agency Washington

  22. DIN Deutsches Institut für Normung (2009) German standard methods for the examination of water, waste water and sludge - jointly determinable substances (group F) - part 41: determination of selected easily volatile organic compounds in water - method using gas chromatography (GC-MS) after solid-phase micro extraction (SPME). DIN 38407–41. Beuth, Berlin

  23. Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B (2004) J Chromatogr A 1024(1–2):217–226

    Article  CAS  Google Scholar 

  24. Tienpont B, David F, Bicchi C, Sandra P (2000) J Microcolumn 12(11):577–584

    Article  CAS  Google Scholar 

  25. Baltussen E, Sandra P, David F, Cramers C (1999) J Microcolumn 11(10):737–747

    Article  CAS  Google Scholar 

  26. Bicchi C, Cordero C, Liberto E, Rubiolo P, Sgorbini B, David F, Sandra P (2005) J Chromatogr A 1094(1–2):9–16

    Article  CAS  Google Scholar 

  27. Montero L, Popp P, Paschke A, Pawliszyn J (2004) J Chromatogr A 1025(1):17–26

    Article  CAS  Google Scholar 

  28. Lancas FM, Queiroz MEC, Grossi P, Olivares IRB (2009) J Sep Sci 32(5–6):813–824. doi:10.1002/jssc.200800669

    Article  CAS  Google Scholar 

  29. Prieto A, Basauri O, Rodil R, Usobiaga A, Fernández LA, Etxebarria N, Zuloaga O (2010) J Chromatogr A 1217(16):2642–2666

    Article  CAS  Google Scholar 

  30. McComb ME, Oleschuk RD, Giller E, Gesser HD (1997) Talanta 44(11):2137–2143

    Article  CAS  Google Scholar 

  31. Shojania S, Oleschuk RD, McComb ME, Gesser HD, Chow A (1999) Talanta 50(1):193–205

    Article  CAS  Google Scholar 

  32. Musshoff F, Lachenmeier DW, Kroener L, Madea B (2002) J Chromatogr A 958(1–2):231–238

    Article  CAS  Google Scholar 

  33. Musshoff F, Lachenmeier DW, Kroener L, Madea B (2003) Forensic Sci Int 133(1–2):32–38

    Article  CAS  Google Scholar 

  34. Castro R, Natera R, Duran E, Garcia-Barroso C (2008) Eur Food Res Technol 228(1):1–18

    Article  CAS  Google Scholar 

  35. Demeestere K, Dewulf J, De Witte B, Van Langenhove H (2007) J Chromatogr A 1153(1–2):130–144

    Article  CAS  Google Scholar 

  36. Berezkin VG, Makarov ED, Stolyarov BV (2003) J Chromatogr A 985(1–2):63–65

    Article  CAS  Google Scholar 

  37. Saito Y, Ueta I, Ogawa M, Abe A, Yogo K, Shirai S, Jinno K (2009) Anal Bioanal Chem 393(3):861–869

    Article  CAS  Google Scholar 

  38. Wang A, Fang F, Pawliszyn J (2005) J Chromatogr A 1072(1):127–135

    Article  CAS  Google Scholar 

  39. Jochmann MA, Yuan X, Schilling B, Schmidt TC (2008) J Chromatogr A 1179(2):96–105

    Article  CAS  Google Scholar 

  40. Laaks J, Jochmann MA, Schilling B, Schmidt TC (2010) Anal Chem 82(18):7641–7648

    Article  CAS  Google Scholar 

  41. Mieth M, Kischkel S, Schubert JK, Hein D, Miekisch W (2009) Anal Chem 81(14):5851–5857

    Article  CAS  Google Scholar 

  42. Mieth M, Schubert JK, Gröger T, Sabel B, Kischkel S, Fuchs P, Hein D, Zimmermann R, Miekisch W (2010) Anal Chem 82(6):2541–2551. doi:10.1021/ac100061k

    Article  CAS  Google Scholar 

  43. Gong Y, Eom IY, Lou DW, Hein D, Pawliszyn J (2008) Anal Chem 80(19):7275–7282

    Article  CAS  Google Scholar 

  44. Lord HL, Zhan W, Pawliszyn J (2010) Anal Chim Acta 677(1):3–18

    Article  CAS  Google Scholar 

  45. Callejon RM, Gonzalez AG, Troncoso AM, Morales ML (2008) J Chromatogr A 1204(1):93–103

    Article  CAS  Google Scholar 

  46. Bicchi C, Iori C, Rubiolo P, Sandra P (2002) J Agric Food Chem 50(3):449–459

    Article  CAS  Google Scholar 

  47. Hayasaka Y, MacNamara K, Baldock GA, Taylor RL, Pollnitz AP (2003) Anal Bioanal Chem 375(7):948–955

    CAS  Google Scholar 

  48. Perez-Carrera E, Leon VML, Parra AG, Gonzalez-Mazo E (2007) J Chromatogr A 1170(1–2):82–90

    Article  CAS  Google Scholar 

  49. Saito Y, Ueta I, Kotera K, Ogawa M, Wada H, Jinno K (2006) J Chromatogr A 1106(1–2):190–195

    Article  CAS  Google Scholar 

  50. Ueta I, Saito Y, Ghani NBA, Ogawa M, Yogo K, Abe A, Shirai S, Jinno K (2009) J Chromatogr A 1216(14):2848–2853

    Article  CAS  Google Scholar 

  51. Jochmann MA, Kmiecik MP, Schmidt TC (2006) J Chromatogr A 1115(1–2):208–216

    Article  CAS  Google Scholar 

  52. Lou DW, Lee X, Pawliszyn J (2008) J Chromatogr A 1201(2):228–234

    Article  CAS  Google Scholar 

  53. Niri VH, Eom IY, Kermani FR, Pawliszyn J (2009) J Sep Sci 32(7):1075–1080

    Article  CAS  Google Scholar 

  54. Akinlua A, Jochmann MA, Laaks J, Ewert A, Schmidt TC (2011) Anal Chim Acta 691(1–2):48–55

    Article  CAS  Google Scholar 

  55. Gaujac A, Emídio ES, Navickiene S, Ferreira SLC, Dórea HS (2008) J Chromatogr A 1203(1):99–104

    Article  CAS  Google Scholar 

  56. Prikryl P, Kubinec R, Jurdakova H, Sevcik J, Ostrovsky I, Sojak L, Berezkin V (2006) Chromatographia 64(1–2):65–70

    Article  CAS  Google Scholar 

  57. Niri VH, Bragg L, Pawliszyn J (2008) J Chromatogr A 1201(2):222–227

    Article  CAS  Google Scholar 

  58. David F, Tienpont B, Sandra P (2003) LC-GC Eur 16(7):410–417

    CAS  Google Scholar 

  59. Kubinec R, Berezkin VG, Gorova R, Addova G, Mracnova H, Sojak L (2004) J Chromatogr B Anal Technol Biomed Life Sci 800(1–2):295–301

    Article  CAS  Google Scholar 

  60. Ridgway K, Lalljie SPD, Smith RM (2006) J Chromatogr A 1124(1–2):181–186

    Article  CAS  Google Scholar 

  61. Jochmann MA, Yuan X, Schmidt TC (2007) Anal Bioanal Chem 387(6):2163–2174

    Article  CAS  Google Scholar 

  62. Sieg K, Fries E, Püttmann W (2008) J Chromatogr A 1178(1–2):178–186

    Article  CAS  Google Scholar 

  63. Jurdakova H, Kubinec R, Jurcisinova M, Krkosova Z, Blasko J, Ostrovsky I, Sojak L, Berezkin VG (2008) J Chromatogr A 1194(2):161–164

    Article  CAS  Google Scholar 

  64. Aguilera-Herrador E, Lucena R, Cardenas S, Valcarcel M (2008) J Chromatogr A 1201(1):106–111

    Article  CAS  Google Scholar 

  65. Assadi Y, Ahmadi F, Hossieni M (2010) Chromatographia 71(11):1137–1141. doi:10.1365/s10337-010-1616-8

    Article  CAS  Google Scholar 

  66. Mohammadi A, Alizadeh N (2006) J Chromatogr A 1107(1–2):19–28

    Article  CAS  Google Scholar 

  67. Norberg J, Thordarson E (2000) Analyst 125(4):673–676

    Article  CAS  Google Scholar 

  68. Luo YZ, Pawliszyn J (2000) Anal Chem 72(5):1058–1063. doi:10.1021/ac990747b

    Article  CAS  Google Scholar 

  69. Hussain C, Mitra S (2011) Anal Bioanal Chem 399(1):75–89. doi:10.1007/s00216-010-4194-6

    Article  CAS  Google Scholar 

  70. Feng J, Sun M, Liu H, Li J, Liu X, Jiang S (2010) J Chromatog A 1217(52):8079–8086

    Article  CAS  Google Scholar 

  71. Zhu F, Guo J, Zeng F, Fu R, Wu D, Luan T, Tong Y, Lu T, Ouyang G (2010) J Chromatogr A 1217(50):7848–7854

    Article  CAS  Google Scholar 

  72. Mehdinia A, Asiabi M, Jabbari A, Kalaee M-R (2010) J Chromatogr A 1217(49):7642–7647

    Article  CAS  Google Scholar 

  73. Meng Y, Anderson JL (2010) J Chromatogr A 1217(40):6143–6152

    Article  CAS  Google Scholar 

  74. Zhao Q, Anderson JL (2010) J Chromatogr A 1217(27):4517–4522

    Article  CAS  Google Scholar 

  75. Augusto F, Carasek E, Silva RGC, Rivellino SR, Batista AD, Martendal E (2010) J Chromatogr A 1217(16):2533–2542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik A. Jochmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laaks, J., Jochmann, M.A. & Schmidt, T.C. Solvent-free microextraction techniques in gas chromatography. Anal Bioanal Chem 402, 565–571 (2012). https://doi.org/10.1007/s00216-011-5511-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5511-4

Keywords

Navigation