Skip to main content
Log in

Composite nanoparticles: the best of two worlds

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanomaterials have rapidly moved into the mainstream for chemical and biological analysis. Nanoparticle probes enhance signal intensity, increase the chemical and physical stability of the probe, and facilitate surface modification for specific targeting. Unfortunately, common problems are encountered with many nanoparticle probes, e.g., poor solubility, poor biocompatibility, and leakage of encapsulated components, that severely restrict the application of probes to ex vivo samples under carefully controlled conditions. A wide range of recently developed multifunctional nanomaterials are poised to make significant contributions to molecular analysis of biological systems. Composite nanoparticle geometries, including composites, hybrids, and core–shell nanoparticles prepared using two or more materials, e.g., silica/inorganic, silica/polymer, or polymer/inorganic combinations, offer improved solubility, easier functionalization, and decreased toxicity compared with the related single-component materials. Furthermore, composite nanomaterials present substantial signal amplification, and improved multiplexing for higher-sensitivity and higher-resolution measurements. Further development and integration of composite nanomaterials into the quantitative sciences will play a key role in the future of functional probes for imaging, quantitative analysis, and biological manipulation.

Multifunctional nanoparticle geometries, including core-shell and composite architectures, are increasing used for biological and chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

nP:

Nanoparticle

QD:

Quantum dot

References

  1. Lee Y, Smith R, Kopelman R (2009) Annu Rev Anal Chem 2:57–76

    Article  CAS  Google Scholar 

  2. Santra S, Zhang P, Wang K, Tapec R, Tan W (2001) Anal Chem 73:4988–4993

    Article  CAS  Google Scholar 

  3. Smith J, Wang L, Tan W (2006) Trends Anal Chem 25:848–855

    Article  CAS  Google Scholar 

  4. Chan W, Nie S (1998) Science 281:2016–2018

    Article  CAS  Google Scholar 

  5. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos P (1998) Science 281:2013–2016

    Article  CAS  Google Scholar 

  6. Anker J, Hall W, Lyandres O, Shah N, Zhao J, Van Duyne R (2008) Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  7. Murphy C, Gole A, Stone J, Sisco P, Alkilany A, Goldsmith E, Baxter S (2008) Acc Chem Res 41:1721–1730

    Article  CAS  Google Scholar 

  8. Thorek D, Chen A, Czupryna J, Tsourkas A (2006) Ann Biomed Eng 34:23–38

    Article  Google Scholar 

  9. Pons T, Medintz I, Wang X, English D, Mattoussi H (2006) J Am Chem Soc 128:15324–15331

    Article  CAS  Google Scholar 

  10. Holzapfel V, Musyanovych A, Landfester K, Lorenz M, Mailänder V (2005) Macromol Chem Phys 206:2440–2449

    Article  CAS  Google Scholar 

  11. Sun H, Scharff-Poulsen A, Gu H, Jakobsen I, Kossman J, Frommer W, Almdal K (2008) ACS Nano 2:19–24

    Article  CAS  Google Scholar 

  12. Ow H, Larson D, Srivastava M, Baird B, Webb W, Weisner U (2005) Nano Lett 5:113–117

    Article  CAS  Google Scholar 

  13. Zhao X, Bagwe R, Tan W (2004) Adv Mater 16:173–176

    Article  CAS  Google Scholar 

  14. Liz-Marzán L, Giersig M, Mulvaney P (1996) Langmuir 12:4329–4335

    Article  Google Scholar 

  15. Aslan K, Wu M, Lakowicz J, Geddes C (2007) J Am Chem Soc 129:1524–1525

    Article  CAS  Google Scholar 

  16. Senarath-Yapa M, Phimphivong S, Coym J, Wirth M, Aspinwall C, Saavedra S (2007) Langmuir 23:12624–12633

    Article  CAS  Google Scholar 

  17. Coradin T, Mercey E, Lisnard L, Livage J (2001) Chem Commun 2496–2497

  18. Zheng M, Li Z, Huang X (2004) Langmuir 20:4226–4235

    Article  CAS  Google Scholar 

  19. Hardman R (2006) Environ Health Perspect 2:165–172

    Article  Google Scholar 

  20. Lu Y, Yin Y, Mayers B, Xia Y (2002) Nano Lett 2:183–186

    Article  CAS  Google Scholar 

  21. Hall S, Davis S, Mann S (2000) Langmuir 16:1454–1456

    Article  CAS  Google Scholar 

  22. Lu Y, Yin Y, Li Z, Xia Y (2002) Nano Lett 2:785–788

    Article  CAS  Google Scholar 

  23. Zhelev Z, Ohba H, Bakalova R (2006) J Am Chem Soc 128:6324–6325

    Article  CAS  Google Scholar 

  24. Nann T, Mulvaney P (2004) Agnew Chem Int Ed 43:5393–5396

    Article  CAS  Google Scholar 

  25. Yi D, Selvan T, Lee S, Papaefthymiou G, Kundaliya D, Ying J (2011) J Am Chem Soc 127:4990–4991

    Article  Google Scholar 

  26. Gao H, Zhao Y, Fu S, Li B, Li M (2002) Colloid Polym Sci 280:653–660

    Article  CAS  Google Scholar 

  27. Lu Y, McLellan J, Xia Y (2004) Langmuir 20:3464–3470

    Article  CAS  Google Scholar 

  28. Schmid A, Fujii S, Armes S (2007) Chem Mater 19:2435–2445

    Article  CAS  Google Scholar 

  29. Lee J, Hong C, Choe S, Shim S (2007) J Colloid Interface Sci 310:112–120

    Article  CAS  Google Scholar 

  30. Verhaegh N, van Blaaderen A (1994) Langmuir 10:1427–1438

    Article  CAS  Google Scholar 

  31. Klempner D (1978) Agnew Chem Int Ed Engl 17:97–106

    Article  Google Scholar 

  32. Fernández-Argüelles M, Yakovlev A, Sperling R, Luccardini C, Gaillard S, Sanz-Medel A, Mallet J, Brochon J, Feltz A, Oheim M, Parak W (2007) Nano Lett 7:2613–2617

    Article  Google Scholar 

  33. Petukova A, Paton A, Wei X, Gourevich I, Nair S, Ruda H, Shik A, Kumacheva E (2008) Adv Funct Mater 18:1961–1968

    Article  Google Scholar 

  34. Lee A, Coombs N, Gourevich I, Kumacheva E, Scholes G (2009) J Am Chem Soc 131:10182–10188

    Article  CAS  Google Scholar 

  35. Siiman O, Burshteyn A (2000) J Phys Chem B 104:9795–9810

    Article  CAS  Google Scholar 

  36. Cheng X, Tjong S, Zhao Q, Li R (2009) J Polym Sci Part A Polym Chem 47:4547–4554

    Article  CAS  Google Scholar 

  37. Kim K, Lee H, Park H, Shin K (2011) J Colloid Interface Sci 318:195–201

    Article  Google Scholar 

  38. Lee H, Lee E, Kim D, Jang N, Jeong Y, Jon S (2006) J Am Chem Soc 128:7383–7389

    Article  CAS  Google Scholar 

  39. Purushotham S, Chang P, Rumpel H, Kee I, Ng R, Chow P, Tan C, Ramanujan R (2009) Nanotechnology 20:305101–305112

    Article  CAS  Google Scholar 

  40. Jain T, Morales M, Sahoo S, Leslie-Pelecky D, Labhasetwar V (2005) Mol Pharm 2:194–205

    Article  CAS  Google Scholar 

  41. Cho H, Dong Z, Pauletti G, Zhang J, Xu H, Gu H, Wang L, Ewing R, Huth C, Wang F, Shi D (2010) ACS Nano 4:5398–5404

    Article  CAS  Google Scholar 

Download references

Acknowledgement

C.A.A. received support from the National Science Foundation (CHE-0548167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Aspinwall.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janczak, C.M., Aspinwall, C.A. Composite nanoparticles: the best of two worlds. Anal Bioanal Chem 402, 83–89 (2012). https://doi.org/10.1007/s00216-011-5482-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5482-5

Keywords

Navigation