Skip to main content
Log in

Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS2) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe–OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rawlings DE (2004) Pure Appl Chem 76:847–859

    Article  CAS  Google Scholar 

  2. Brierley CL (2008) Trans Nonferrous Met Soc China 18:1302–1310

    Article  CAS  Google Scholar 

  3. Ndlovu S (2008) Hydrometallurgy 91:20–27

    Article  CAS  Google Scholar 

  4. Rossi G (1971) Res Assoc Miner Sarda Iglesias 76:5–23, in Italian

    Google Scholar 

  5. Rossi A, Atzei D, Da Pelo S, Frau F, Lattanzi P, England KER, Vaughan DJ (2001) Surf Interface Anal 31:465

    Article  CAS  Google Scholar 

  6. Fantauzzi M, Atzei D, Elsener B, Lattanzi P, Rossi A (2006) Surf Interface Anal 38:922

    Article  CAS  Google Scholar 

  7. Fantauzzi M, Atzei D, Elsener B, Lattanzi P, Rossi A (2007) Surf Interface Anal 39:908

    Article  CAS  Google Scholar 

  8. Elsener B, Fantauzzi M, Atzei D, Rossi A (2007) Eur J Mineral 19:353

    Article  CAS  Google Scholar 

  9. Fantauzzi M, Rossi G, Elsener B, Atzei D, Loi G, Rossi A (2009) Anal Bioanal Chem 393:1931–1941

    Article  CAS  Google Scholar 

  10. Tuovinen OH, Bhatti TB, Bigham JM, Hallberg KB, Garcia OJr, Lindström EB (1994) Appl Environ Microbiol 60:3268–3274

    CAS  Google Scholar 

  11. Sasaki K (1997) Can Mineral 35:999–1008

    CAS  Google Scholar 

  12. Xia J, Yang Y, He H, Zhao X, Liang C, Zheng L, Ma C, Zhao Y, Nie Z, Qiu G (2010) Hydrometallurgy 100:129–135

    Article  CAS  Google Scholar 

  13. Nesbitt HW, Muir IJ (1998) Mineral Petrol 62:123–144

    Article  CAS  Google Scholar 

  14. Corkhill CI, Wincott PL, Lloyd JR, Vaughan DJ (2008) Geochim Cosmochim Acta 72:5616–5633

    Article  CAS  Google Scholar 

  15. Schippers A, Sand W (1999) Appl Environ Microbiol 65:319–321

    CAS  Google Scholar 

  16. Hansford GS, Vargas T (2001) Hydrometallurgy 59:135–145

    Article  CAS  Google Scholar 

  17. Sasaki K, Takatsugi K, Kaneko K, Kozai N, Ohnuki T, Tuovinen OH, Hirajima T (2010) Hydrometallurgy 104:424–431

    Article  CAS  Google Scholar 

  18. Zhang L, Qiu G, Hu Y, Sun X, Li J, Gu G (2008) Trans Non Ferrous Met Soc China 18:1415–1420

    Article  CAS  Google Scholar 

  19. Asta MP, Cama J, Martinez M, Giménez J (2009) J Hazard Mater 171:965–972

    Article  CAS  Google Scholar 

  20. Hackl RP, Dreisinger DB, Peters E, King JA (1995) Hydrometallurgy 39:25–48

    Article  CAS  Google Scholar 

  21. Silverman MP, Lundgren DG (1959) J Bacteriol 77:642

    Article  CAS  Google Scholar 

  22. Valenti P, Polidoro M, Buonfiglio V, Visca P, Orsi N (1990) J Gen Appl Microbiol 36:351

    Article  CAS  Google Scholar 

  23. Nienow AW, Warmoeskerken GM, Smith JM, Konno M (1985) On the flooding/loading transition and the complete dispersal condition in aerated vessels agitated by a Rushton-turbine; in Cranfield, Bedford, England: BHRA. Fifth European Conference on Mixing, pp 143–154, Wurzburg, Germany

  24. Warmoeskerken GM, Smith JM (1985) Chem Eng Sci 40:2063–2071

    Article  Google Scholar 

  25. Paglianti A (2002) Can J Chem Eng 80:1–5

    Article  Google Scholar 

  26. Wiedmann JA, Steiff A, Weinspach PM (1980) Chem. Eng Commun 6:245–256

    Article  CAS  Google Scholar 

  27. Scorciapino MA (2007) Ph.D. Thesis 2007. University of Cagliari, Italy

  28. Rossi A, Elsener B (1992) Surf Interface Anal 18:499–504

    Article  CAS  Google Scholar 

  29. Seah MP (2001) Surf Interface Anal 31:721–723

    Article  CAS  Google Scholar 

  30. Shirley DA (1972) Phys Rev B 5:4709–4714

    Article  Google Scholar 

  31. Seah MP (2003) Quantification in AES and XPS. In: Briggs D, Grant JT (eds) Surface analysis by Auger and X-ray photoelectron spectroscopy. IM Publication, Manchester

    Google Scholar 

  32. Scofield JH (1976) J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  33. Reilman RF, Msezane A, Manson STJ (1976) J Electron Spectrosc Relat Phenom 8:389–394

    Article  CAS  Google Scholar 

  34. Wagner CD, Gale LH, Raymond RH (1979) Anal Chem 51:446–482

    Article  Google Scholar 

  35. Moretti G (1998) J Electron Spectrosc Relat Phenom 95:95

    Article  CAS  Google Scholar 

  36. XRD. Available at http://www.xrd.us/. Accessed 19 Feb 2010

  37. Richardson S, Vaughan DJ (1989) Miner Mag 53:223–229

    Article  CAS  Google Scholar 

  38. Buckley AN, Walker GW (1989) Appl Surf Sci 35:227–240

    Article  Google Scholar 

  39. Boyle RW, Jonasson IR (1973) J Geochem Explor 2:251–296

    Article  CAS  Google Scholar 

  40. Dove PM, Rimstidt JD (1985) Am Mineral 70:838–844

    CAS  Google Scholar 

  41. Frau F, Rossi A, Ardau C, Biddau R, DaPelo S, Atzei D, Licheri C, Cannas C, Capitani GC (2005) Microchim Acta 151:189–201

    Article  CAS  Google Scholar 

  42. Corkhill CL, Vaughan DJ (2009) Appl Geochem 24:2342–2361

    Article  CAS  Google Scholar 

  43. Olla M, Navarra G, Elsener B, Rossi A (2006) Surf Interface Anal 38:964–974

    Article  CAS  Google Scholar 

  44. McIntyre NS, Zetaruk DG (1977) Anal Chem 49:1521–1529

    Article  CAS  Google Scholar 

  45. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Surf Interface Anal 36:1564–1574

    Article  CAS  Google Scholar 

  46. Jensen AB, Webb C (1995) Process Biochem 30:225–236

    CAS  Google Scholar 

  47. Baron D, Palmer C (1996) Geochim Cosmochim Acta 60:185–195

    Article  CAS  Google Scholar 

  48. Rossi G (1990) Biohydrometallurgy. McGraw-Hill, New York

    Google Scholar 

  49. Carlson L, Lindström EB, Hallberg KB, Tuovinen OH (1992) Appl Environ Microbiol 58:1046–1049

    CAS  Google Scholar 

  50. Sand W, Gehrke T (2006) Res Microbiol 157:49–56

    Article  CAS  Google Scholar 

  51. Gehrke T, Telegdi J, Thierry D, Sand W (1998) Appl Environ Microbiol 64:2743–2747

    CAS  Google Scholar 

  52. Harneit K, Göksel A, Kock D, Klock JH, Gehrke T, Sand W (2006) Hydrometallurgy 83:245–254

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation to Prof. Cristina Trois, University of Natal, Durban, South Africa, for her kind assistance with the purchase and shipment of the commercial pyrite/arsenopyrite concentrate sample of the Fairview Plant. They also wish to thank the Management of the Fairview Mine for granting permission to purchase the concentrate. This research was carried out with the financial support of the University of Cagliari and of the Italian Ministry for Education, Universities and Research in the framework of the Research Project of National relevance. Finally, the patience and skilful cooperation of the Technicians of the Inorganic and Analytical Chemistry Department of the University of Cagliari are worthy of being acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fantauzzi, M., Licheri, C., Atzei, D. et al. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques. Anal Bioanal Chem 401, 2237–2248 (2011). https://doi.org/10.1007/s00216-011-5300-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5300-0

Keywords

Navigation