Skip to main content
Log in

Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Increasing the sensitivity in DNA microarray hybridization can significantly enhance the capability of microarray technology for a wide range of research and clinical diagnostic applications, especially for those with limited sample biomass. To address this issue, using reverse microemulsion method and surface chemistry, a novel class of homogenous, photostable, highly fluorescent streptavidin-functionalized silica nanoparticles was developed, in which Alexa Fluor 647 (AF647) molecules were covalently embedded. The coating of bovine serum albumin on the resultant fluorescent particles can greatly eliminate nonspecific background signal interference. The thus-synthesized fluorescent nanoparticles can specifically recognize biotin-labeled target DNA hybridized to the microarray via streptavidin–biotin interaction. The response of this DNA microarray technology exhibited a linear range within 0.2 to 10 pM complementary DNA and limit of detection of 0.1 pM, enhancing microarray hybridization sensitivity over tenfold. This promising technology may be potentially applied to other binding events such as specific interactions between proteins.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lytton-Jean AKR, Han MS, Mirkin CA (2007) Anal Chem 79:6037–6041

    Article  CAS  Google Scholar 

  2. Curreli M, Li C, Sun Y, Lei B, Gundersen MA, Thompson ME, Zhou C (2005) J Am Chem Soc 127:6922–6923

    Article  CAS  Google Scholar 

  3. Liu A, Wei M, Honma I, Zhou H (2005) Anal Chem 77:8068–8074

    Article  CAS  Google Scholar 

  4. Patolsky F, Zheng G, Lieber CM (2006) Anal Chem 78:4260–4269

    Article  CAS  Google Scholar 

  5. Liu A, Wei MD, Honma I, Zhou H (2006) Adv Funct Mater 16:371–376

    Article  CAS  Google Scholar 

  6. Liu A, Honma I, Zhou H (2007) Biosens Bioelectron 23:74–80

    Article  Google Scholar 

  7. Liu A, Zhou H, Honma I, Ichihara M (2007) Appl Phys Lett 90:253112

    Article  Google Scholar 

  8. Liu A (2008) Biosens Bioelectron 24:167–177

    Article  CAS  Google Scholar 

  9. Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007) Nature 445:519–522

    Article  CAS  Google Scholar 

  10. Chen Z, Tabakman SM, Goodwin AP, Kattah MG, Daranciang D, Wang X, Zhang G, Li X, Liu Z, Utz PJ, Jiang K, Fan S, Dai H (2008) Nat Biotech 26:1285–1292

    Article  CAS  Google Scholar 

  11. Algar WR, Massey M, Krull UJ (2009) Trends Analyt Chem 28:292–306

    Article  Google Scholar 

  12. Bao P, Frutos AG, Greef C, Lahiri J, Muller U, Peterson TC, Warden L, Xie X (2002) Anal Chem 74:1792–1797

    Article  CAS  Google Scholar 

  13. Piao JY, Park EH, Choi K, Quan B, Kang DH, Park PY, Kim DS, Chung DS (2009) Analyst 80:967–973

    CAS  Google Scholar 

  14. Zhang S, Metelev V, Tabatadze D, Zamecnik PC, Bogdanov A (2008) Proc Natl Acad Sci USA 105:4156–4161

    Article  CAS  Google Scholar 

  15. Fang S, Lee HJ, Wark AW, Corn RM (2006) J Am Chem Soc 128:14044–14046

    Article  CAS  Google Scholar 

  16. Cooper MA (2002) Nat Rev Drug Discov 1:515–528

    Article  CAS  Google Scholar 

  17. Chan WCW, Nie S (1998) Science 281:2016–2018

    Article  CAS  Google Scholar 

  18. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Nat Biotechnol 21:47–51

    Article  CAS  Google Scholar 

  19. Gerion D, Parak WJ, Williams SC, Zanchet D, Micheel CM, Alivisatos AP (2002) J Am Chem Soc 124:7070–7074

    Article  CAS  Google Scholar 

  20. Gerion D, Chen F, Kannan B, Fu A, Parak W, Chen D, Majumdar A, Alivisatos A (2003) Anal Chem 75:4766–4772

    Article  CAS  Google Scholar 

  21. Burns A, Ow H, Wiesner U (2006) Chem Soc Rev 35:1028–1042

    Article  CAS  Google Scholar 

  22. Bagwe RP, Hilliard LR, Tan W (2006) Langmuir 22:4357–4362

    Article  CAS  Google Scholar 

  23. Kim HK, Kang SJ, Choi SK, Min YH, Yoon CS (1999) Chem Mater 11:779–788

    Article  CAS  Google Scholar 

  24. Zhao X, Tapec-Dytioco R, Tan W (2003) J Am Chem Soc 125:11474–11475

    Article  CAS  Google Scholar 

  25. Zhao X, Bagwe RP, Tan W (2004) Adv Mater 16:173–176

    Article  CAS  Google Scholar 

  26. Rossi LM, Shi L, Rosenzweig N, Rosenzweig Z (2006) Biosens Bioelectron 21:1900–1906

    Article  CAS  Google Scholar 

  27. Zarur AJ, Ying JY (2000) Nature 403:65–67

    Article  CAS  Google Scholar 

  28. Tapec R, Zhao XJ, Tan W (2002) J Nanosci Nanotech 2:405–409

    Article  CAS  Google Scholar 

  29. Yong K-T, Roy I, Swihart MT, Prasad PN (2009) J Mater Chem 19:4655–4672

    Article  CAS  Google Scholar 

  30. Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2011) Angew Chem Intl Ed 50:4056–4066

    Article  CAS  Google Scholar 

  31. Zhou X, Zhou J (2004) Anal Chem 76:5302–5312

    Article  CAS  Google Scholar 

  32. Schüler T, Nykytenko A, Csaki A, Möller R, Fritzsche W, Popp J (2009) Anal Bioanal Chem 395:1097–1105

    Article  Google Scholar 

  33. Wu L, Thompson DK, Li G, Hurt RA, Tiedje JM, Zhou J (2001) Appl Environ Microbiol 67:5780–5790

    Article  CAS  Google Scholar 

  34. He Z, Wu L, Fields MW, Zhou J (2005) Appl Environ Microbiol 71:5154–5162

    Article  CAS  Google Scholar 

  35. Zhou J, Kang S, Schadt CW, Garten CT (2008) Proc Natl Acad Sci USA 105:7768–7773

    Article  CAS  Google Scholar 

  36. Zhou J (2009) Phytopathol 99:S164–S164

    Google Scholar 

  37. He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Wu WM, Gu B, Jardine P, Criddle C, Zhou J (2007) ISME J 1:67–77

    Article  CAS  Google Scholar 

  38. He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL, Li X, Wu L, Gentry TJ, Yin Y, Liebich J, Hazen TC, Zhou J (2010) ISME J 4:1167–1179

    Article  CAS  Google Scholar 

  39. Liang Y, He Z, Wu L, Deng Y, Li G, Zhou J (2010) Appl Environ Microbiol 76:1088–1094

    Article  CAS  Google Scholar 

  40. Liebich J, Chong SC, Schadt C, He Z, Zhou J (2006) Appl Environ Microbiol 72:1688–1691

    Article  CAS  Google Scholar 

  41. Wang X, Gao H, Shen Y, Weinstock GM, Zhou J, Palzkill T (2008) Nucleic Acids Res 36:4863–4871

    Article  CAS  Google Scholar 

  42. Hsu S-M (1990) In: Wilchek M, Bayer EA (eds) Avidin-biotin technology: methods in enzymology, vol 184. Academic, San Diego, pp 357–363

    Chapter  Google Scholar 

  43. Nakayama H, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2004) Biotechnol Bioeng 84:96–102

    Article  Google Scholar 

  44. Park S-J, Taton TA, Mirkin CA (2002) Science 295:1503–1506

    Article  CAS  Google Scholar 

  45. Kim H, Takei H, Yasuda K (2010) Sens Actuators B Chem 144:6–10

    Article  Google Scholar 

  46. Ali MF, Kirby R, Goodey AP, Rodriguez MD, Ellington AD, Neikirk DP, McDevitt JT (2003) Anal Chem 75:4732–4739

    Article  CAS  Google Scholar 

  47. Wang L, Lofton C, Popp M, Tan W (2007) Bioconjugate Chem 18:610–613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Oklahoma Center for the Advancement of Science and Technology under Oklahoma Applied Research Support Program, and Oklahoma Bioenergy Center. A.L. thanks Chinese Academy of Sciences for honoring the Hundred-Talent-Project(KSCX2-YW-BR-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aihua Liu, Liyou Wu or Jizhong Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, A., Wu, L., He, Z. et al. Development of highly fluorescent silica nanoparticles chemically doped with organic dye for sensitive DNA microarray detection. Anal Bioanal Chem 401, 2003–2011 (2011). https://doi.org/10.1007/s00216-011-5258-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5258-y

Keywords

Navigation