Skip to main content
Log in

An advanced LC-MS (Q-TOF) technique for the detection of amino acids in atmospheric aerosols

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed. This article describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m−3 (N = 13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m−3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time-consuming preparation procedures while providing the advancement of selective mass determination for important organic nitrogen (ON) species. Details on sample preparation that eliminates the freeze-drying approach typically practiced for water removal with biological samples, and vapor phase microwave hydrolysis parameters are provided. Method application for determination of atmospheric ON is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dittmar T, Fitznar HP, Kattner G (2001) Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from d-and l-amino acids. Geochimica et Cosmochimica Acta 65(22):4103–4114

    Article  CAS  Google Scholar 

  2. Zhang Q, Anastasio C (2001) Chemistry of fog waters in California’s Central Valley—Part 3: concentrations and speciation of organic and inorganic nitrogen. Atmospheric Environment 35(32):5629–5643

    Article  CAS  Google Scholar 

  3. Yu Z, Zhang Q, Kraus T, Dahlgren R, Anastasio C, Zasoski R (2002) Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry 61(2):173–198

    Article  CAS  Google Scholar 

  4. Wedyan MA, Preston MR (2008) The coupling of surface seawater organic nitrogen and the marine aerosol as inferred from enantiomer-specific amino acid analysis. Atmospheric Environment 42(37):8698–8705

    Article  CAS  Google Scholar 

  5. Altieri KE, Turpin BJ, Seitzinger SP (2009) Composition of dissolved organic nitrogen in continental precipitation investigated by ultra-high resolution FT-ICR mass spectrometry. Environ Sci Technol 43(18):6950–6955

    Article  CAS  Google Scholar 

  6. Violaki K, Mihalopoulos N (2010) Water-soluble organic nitrogen (WSON) in size-segregated atmospheric particles over the Eastern Mediterranean. Atmospheric Environment

  7. Ozel MZ, Hamilton JF, Lewis AC (2011) New sensitive and quantitative analysis method for organic nitrogen compounds in urban aerosol samples. Environ Sci Technol 45:1497–1505

    Article  CAS  Google Scholar 

  8. Zhang Q, Anastasio C, Jimenez-Cruz M (2002) Water-soluble organic nitrogen in atmospheric fine particles (PM2. 5) from northern California. J Geophys Res 107:4112

    Article  Google Scholar 

  9. Mace KA, Artaxo P, Duce RA (2003) Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. J Geophys Res 108(D16):4512

    Article  Google Scholar 

  10. Ge X, Wexler AS, Clegg SL (2010) Atmospheric amines-part I. A review. Atmospheric Environment

  11. Castro MS, Driscoll CT, Jordan TE, Reay WG, Boynton WR, Seitzinger SP, Styles RV, Cable JE (2001) Contribution of atmospheric deposition to the total nitrogen loads to thirty-four estuaries on the Atlantic and Gulf coasts of the United States. In: Nitrogen loading in coastal water bodies: an atmospheric perspective. AGU, pp 77–106

  12. Dennis R, Haeuber R, Blett T, Cosby J, Driscoll C, Sickles J, Johnston J (2007) Sulfur and nitrogen deposition on ecosystems in the United States. EM-PITTSBURGH-AIR AND WASTE MANAGEMENT ASSOCIATION-:12

  13. Milne PJ, Zika RG (1993) Amino acid nitrogen in atmospheric aerosols: occurrence, sources and photochemical modification. Journal of Atmospheric Chemistry 16(4):361–398

    Article  CAS  Google Scholar 

  14. Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57(1):99–136

    Article  Google Scholar 

  15. Cornell S, Jickells T, Cape J, Rowland A, Duce R (2003) Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmospheric Environment 37(16):2173–2191

    Article  CAS  Google Scholar 

  16. Burns DA (2003) Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming—a review and new analysis of past study results. Atmospheric Environment 37(7):921–932

    Article  CAS  Google Scholar 

  17. Chan MN, Choi MY, Ng NL, Chan CK (2005) Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species. Environ Sci Technol 39(6):1555–1562

    Article  CAS  Google Scholar 

  18. de Haan DOD, Corrigan AL, Smith KW, Stroik DR, Turley JJ, Lee FE, Tolbert MA, Jimenez JL, Cordova KE, Ferrell GR (2009) Secondary organic aerosol-forming reactions of glyoxal with amino acids. Environ Sci Technol 43(8):2818–2824

    Article  Google Scholar 

  19. Saxena P, Hildemann LM (1996) Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24(1):57–109

    Article  CAS  Google Scholar 

  20. Collett JL, Hoag KJ, Rao X, Pandis SN (1999) Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing. Atmospheric Environment 33(29):4833–4847

    Article  CAS  Google Scholar 

  21. Laskin A, Smith JS, Laskin J (2009) Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. Environ Sci Technol 43(10):3764–3771

    Article  CAS  Google Scholar 

  22. Laskin J, Laskin A, Roach PJ, Slysz GW, Anderson GA, Nizkorodov SA, Bones DL, Nguyen LQ (2010) High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Anal Chem 82(5):2048–2058

    Article  CAS  Google Scholar 

  23. Mopper K, Zika RG (1987) Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling. Nature 325(6101):246–249

    Article  CAS  Google Scholar 

  24. Kuznetsova M, Lee C, Aller J (2005) Characterization of the proteinaceous matter in marine aerosols. Mar Chem 96(3–4):359–377

    Article  CAS  Google Scholar 

  25. Tong Y, Lighthart B (2000) The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Science and Technology 32(5):393–403

    Article  CAS  Google Scholar 

  26. Scheller E (2001) Amino acids in dew-origin and seasonal variation. Atmospheric Environment 35(12):2179–2192

    Article  CAS  Google Scholar 

  27. Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28(2):239–242

    Article  Google Scholar 

  28. Mandalakis M, Apostolaki M, Stephanou EG (2010) Trace analysis of free and combined amino acids in atmospheric aerosols by gas chromatography-mass spectrometry. Journal of Chromatography A 1217(1):143–150

    Article  CAS  Google Scholar 

  29. Tsugita A, Uchida T, Mewes HW, Ataka T (1987) A rapid vapor-phase acid (hydrochloric acid and trifluoroacetic acid) hydrolysis of peptide and protein. J Biochem 102(6):1593

    CAS  Google Scholar 

  30. Keil RG, Kirchman DL (1991) Dissolved combined amino acids in marine waters as determined by a vapor-phase hydrolysis method. Mar Chem 33(3):243–259

    Article  CAS  Google Scholar 

  31. Mandalakis M, Apostolaki M, Tziaras T, Polymenakou P, Stephanou EG (2010) Free and combined amino acids in marine background atmospheric aerosols over the Eastern Mediterranean. Atmospheric Environment

  32. Petritis K, Chaimbault P, Elfakir C, Dreux M (2000) Parameter optimization for the analysis of underivatized protein amino acids by liquid chromatography and ionspray tandem mass spectrometry. Journal of Chromatography A 896(1–2):253–263

    Article  CAS  Google Scholar 

  33. Qu J, Wang Y, Luo G, Wu Z, Yang C (2002) Validated quantitation of underivatized amino acids in human blood samples by volatile ion-pair reversed-phase liquid chromatography coupled to isotope dilution tandem mass spectrometry. Anal Chem 74(9):2034–2040

    Article  CAS  Google Scholar 

  34. Piraud M, Vianey Saban C, Petritis K, Elfakir C, Steghens JP, Morla A, Bouchu D (2003) ESI MS/MS analysis of underivatised amino acids: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. Rapid Communications in Mass Spectrometry 17(12)):1297–1311

    Article  CAS  Google Scholar 

  35. Piraud M, Vianey Saban C, Bourdin C, Acquaviva Bourdain C, Boyer S, Elfakir C, Bouchu D (2005) A new reversed phase liquid chromatographic/tandem mass spectrometric method for analysis of underivatised amino acids: evaluation for the diagnosis and the management of inherited disorders of amino acid metabolism. Rapid Communications in Mass Spectrometry 19(22):3287–3297

    Article  CAS  Google Scholar 

  36. Piraud M, Vianey Saban C, Petritis K, Elfakir C, Steghens JP, Bouchu D (2005) Ion pairing reversed phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Communications in Mass Spectrometry 19(12):1587–1602

    Article  CAS  Google Scholar 

  37. Zwiener C, Frimmel FH (2004) LC-MS analysis in the aquatic environment and in water treatment—a critical review. Anal Bioanal Chem 378(4):851–861

    Article  CAS  Google Scholar 

  38. Pérez S, Eichhorn P, Barceló D (2007) Structural characterization of photodegradation products of enalapril and its metabolite enalaprilat obtained under simulated environmental conditions by hybrid quadrupole-linear ion trap-MS and quadrupole-time-of-flight-MS. Anal Chem 79(21):8293–8300

    Article  Google Scholar 

  39. Hollender J, Singer H, Hernando D, Kosjek T, Heath E (2010) The challenge of the identification and quantification of transformation products in the aquatic environment using high resolution mass spectrometry. Xenobiotics in the Urban Water Cycle:195–211

  40. Erisman JW, Draaijers G, Duyzer J, Hofschreuder P, Leeuwen NV, Römer F, Ruijgrok W, Wyers P, Gallagher M (1997) Particle deposition to forests—summary of results and application. Atmospheric Environment 31(3):321–332

    Article  CAS  Google Scholar 

  41. Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8(3):706–733

    Article  Google Scholar 

  42. Lin M, Walker J, Geron C, Khlystov A (2010) Organic nitrogen in PM2. 5 aerosol at a forest site in the Southeast US. Atmos Chem Phys 10:2145–2157

    Article  CAS  Google Scholar 

  43. Geron C (2009) Carbonaceous aerosol over a Pinus taeda forest in Central North Carolina, USA. Atmospheric Environment 43(4):959–969

    Article  CAS  Google Scholar 

  44. Swartz E, Stockburger L, Gundel LA (2003) Recovery of semivolatile organic compounds during sample preparation: implications for characterization of airborne particulate matter. Environ Sci Technol 37(3):597–605

    Article  CAS  Google Scholar 

  45. Fountoulais M, Hans-Werner L (1998) Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A 826:109–134

    Article  Google Scholar 

  46. Confer DR, Logan BE, Aiken BS, Kirchman DL (1995) Measurement of dissolved free and combined amino acids in unconcentrated wastewaters using high performance liquid chromatography. Water Environment Research 67(1):118–125

    Article  CAS  Google Scholar 

  47. Zhang Q, Anastasio C (2003) Free and combined amino compounds in atmospheric fine particles (PM2. 5) and fog waters from Northern California. Atmospheric Environment 37(16):2247–2258

    Article  CAS  Google Scholar 

  48. Gilman LB, Woodward C (1990) An evaluation of microwave heating for the vapor phase hydrolysis of proteins. Current research in protein chemistry: techniques, structure, and function. Academic, San Diego, pp 23–36

    Google Scholar 

  49. Margolis SA, Jassie L, Kingston H (1991) The hydrolysis of proteins by microwave energy. J Autom Chem 13(3):93

    Article  CAS  Google Scholar 

  50. Peter A, Laus G, Tourwe D, Gerlo E, Van Binst G (1993) An evaluation of microwave heating for the rapid hydrolysis of peptide samples for chiral amino acid analysis. Peptide Research 6:48–48

    CAS  Google Scholar 

  51. Tatár E, Khalifa M, Záray G, Molnár-Perl I (1994) Comparison of the recovery of amino acids in vapour-phase hydrolysates of proteins performed in a Pico Tag work station and in a microwave hydrolysis system. Journal of Chromatography A 672(1–2):109–115

    Article  Google Scholar 

  52. Marconi E, Panfili G, Bruschi L, Vivanti V, Pizzoferrato L (1995) Comparative study on microwave and conventional methods for protein hydrolysis in food. Amino Acids 8(2):201–208

    Article  CAS  Google Scholar 

  53. Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN (2007) Microwave assisted proteomics. Mass Spectrometry Reviews 26(5):657–671

    Article  CAS  Google Scholar 

  54. Nakashima T, Higa H, Matsubara H, Benson AM, Yasunobu KT (1966) The amino acid sequence of bovine heart cytochrome c. J Biol Chem 241(5):1166

    CAS  Google Scholar 

  55. Snyder LR, Glajch JL, Kirkland JJ (1997) Practical HPLC method development. Wiley New York etc.

  56. Skoog AA, Leary JJ (1992) Principles of instrument analysis, 4th edn. Saunders, Orlando

    Google Scholar 

  57. Laskin A, Lechevalier HA (1982) CRC handbook of microbiology: microbial composition: amino acids, proteins, and nucleic acids. In, vol III, 3rd edn. CRC, Boca Raton

    Google Scholar 

  58. Spoelstra SF (1978) Degradation of tyrosine in anaerobically stored piggery wastes and in pig feces. Appl Environ Microbiol 36(5):631

    CAS  Google Scholar 

  59. O’Donnell TH, Macko SA, Wehmiller JF (2007) Stable carbon isotope composition of amino acids in modern and fossil Mercenaria. Org Geochem 38(3):485–498

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank John T. Walker and Chris Geron for assistance in sample collection. Additional funding for this research was provided through a U.S. Department of Energy interagency agreement administered by the Oak Ridge Institute for Science and Education (ORISE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Hays.

Additional information

Published in the special issue Aerosol Analysis with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samy, S., Robinson, J. & Hays, M.D. An advanced LC-MS (Q-TOF) technique for the detection of amino acids in atmospheric aerosols. Anal Bioanal Chem 401, 3103–3113 (2011). https://doi.org/10.1007/s00216-011-5238-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5238-2

Keywords

Navigation