Skip to main content
Log in

Effect of d-allose on prostate cancer cell lines: phospholipid profiling by nanoflow liquid chromatography–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

d-Allose, a rare, naturally occurring monosaccharide, is known to exert anti-proliferative effects on cancer cells. The effects of d-allose on the cellular membranes of hormone-refractory prostate cancer cell line (DU145), hormone-sensitive prostate cancer cell line (LNCaP), and normal prostate epithelial cells (PrEC) were studied at the molecular level by phospholipid (PL) profiling using a shotgun lipidomic method. The molecular structures of 85 PL species including 23 phosphatidylcholines, 12 phosphatidylethanolamines (PEs), 11 phosphatidylserines (PSs), 16 phosphatidylinositols, 9 phosphatidic acids (PAs), and 14 phosphatidylglycerols (PGs) were identified by data-dependent collision-induced dissociation of nanoflow liquid chromatography–tandem mass spectrometry, and the PL amounts were quantified. The addition of d-allose to prostate cancer cell lines during their growth phases had negligible or decreased effects on the relative regulation of PL species, but several new PS molecules (two for DU145 and three for LNCaP) emerged. In contrast, experiments on the PrEC cell line revealed that some high abundant species (14:0/14:0-PE, 16:2/16:0-PG, and 20:6/18:1-PA) showed significant increases in concentration. These findings support a mechanism for the anti-proliferative effect of d-allose on prostate cancer cell lines that involves the induction of programmed cell death since PS molecules are known to induce apoptosis. Principal component analysis was carried out to examine differences in PL distributions among the three cell lines promoted by d-allose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brouwers JFHM, Vernooji EAAM, Tielens AGM, van Golde LMG (1999) J Lipid Res 40:164–169

    CAS  Google Scholar 

  2. Wright MM, Howe AG, Zaremberg V (2004) Biochem Cell Biol 82:18–26

    Article  CAS  Google Scholar 

  3. Leach MO, Verrill M, Glaholm J, Smith TAD, Collins DJ, Payne GS, Sharp JC, Ronen SM, McCready VR, Powles TJ, Smith IE (1998) NMR Biomed 11:314–340

    Article  CAS  Google Scholar 

  4. Bougnoux P, Chajes V, Lanson M, Hacene K, Body G, Couet C, Folch OL (1992) Breast Cancer Res Treat 20:185–194

    Article  CAS  Google Scholar 

  5. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G (1998) JAMA 280:719–723

    Article  CAS  Google Scholar 

  6. Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC Jr, LaPolla JP, Arango H, Hoffman MS, Martino M, Wakeley K, Griffin D, Blanco RW, Cantor AB, Xiao YJ, Krischer JP (2004) Cancer Epidemiol Biomark Prev 13:1185–1191

    CAS  Google Scholar 

  7. Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR, James JK, Hurd RE, Kurhanewicz J (2003) Magn Reson Med 50:944–954

    Article  CAS  Google Scholar 

  8. Min HK, Lim S, Chung BC, Moon MH (2011) Anal Bioanal Chem 399:823–830

    Article  CAS  Google Scholar 

  9. Gronberg H (2003) Lancet 163:859–864

    Article  Google Scholar 

  10. Clarke RA, Schirra HJ, Catto JW, Lavin MF, Gardiner RA (2010) Cancers 2:1125–1154

    Article  CAS  Google Scholar 

  11. Hsing AW, Devesa SS (2001) Epidemiol Rev 23:3–13

    CAS  Google Scholar 

  12. Tamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W et al (2007) Cancer Res 67:5117–5125

    Article  CAS  Google Scholar 

  13. Naha N, Lee HY, Jo MJ, Chung BC, Kim SH, Kim MO (2008) Apoptosis 13:1121–1134

    Article  CAS  Google Scholar 

  14. Knudson CM, Korsmeyer SJ (1997) Nat Genet 16:358–363

    Article  CAS  Google Scholar 

  15. Scher HI, Sawyers CL (2006) J Clin Oncol 23:8253–8261

    Article  Google Scholar 

  16. Luck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) Science 275:1132–1136

    Article  Google Scholar 

  17. Lee T, Malathi K, Lohyama S, Silane M, Berenstein A, Jayarama T (2004) Cell Biochem Funct 22:35–40

    Article  Google Scholar 

  18. Arnold EC, Siladay PJ (1997) US Patent No. 5,620,960

  19. Murata A, Sekiya K, Watanabe Y (2003) J Biosci Bioeng 96:89–91

    CAS  Google Scholar 

  20. Sui L, Dong Y, Watanabe Y et al (2005) Int J Oncol 27:907–912

    CAS  Google Scholar 

  21. Hirata Y, Saito M, Tsukamoto I, Yamaguchi F et al (2009) J Biosci Bioeng 107:562–568

    Article  CAS  Google Scholar 

  22. Kim HY, Wang TCL, Ma YC (1994) Anal Chem 66:3977–3982

    Article  CAS  Google Scholar 

  23. Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharaju P (2001) J Lipid Res 42:663–672

    Google Scholar 

  24. Fuchs B, Schiller J, Süβ R, Schürenburg M, Suckau D (2007) Anal Bioanal Chem 389:827–834

    Article  CAS  Google Scholar 

  25. Taguchi R, Hayakawa J, Takeuchi Y, Ishida M (2000) J Mass Spectrom 35:953–966

    Article  CAS  Google Scholar 

  26. Isaac G, Bylund D, Mansson J-E, Markides KE, Bergquist J (2003) J Neurosci Meth 128:111–119

    Article  CAS  Google Scholar 

  27. Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005) J Chromatogr B 823:26–36

    Article  CAS  Google Scholar 

  28. Bang DY, Kang D, Moon MH (2006) J Chromatogr A 1104:222–229

    Article  CAS  Google Scholar 

  29. Bang DY, Ahn E, Moon MH (2007) J Chromatogr B 852:268–277

    Article  CAS  Google Scholar 

  30. Ahn E, Kim H, Chung BC, Moon MH (2007) J Sep Sci 30:2598–2604

    Article  CAS  Google Scholar 

  31. Kim H, Min HK, Kong G, Moon MH (2009) Anal Bioanal Chem 393:1649–1656

    Article  CAS  Google Scholar 

  32. Min HK, Kong G, Moon MH (2010) Anal Bioanal Chem 396:1273–1280

    Article  CAS  Google Scholar 

  33. Folch J, Less M, Stanley GHS (1957) J Biol Chem 226:497–509

    CAS  Google Scholar 

  34. Schroit AJ, Zwaal RF (1991) Biochim Biophys Acta 1071:313–3129

    CAS  Google Scholar 

  35. Iguchi K, Hirano K, Ishida RM (2010) Apoptosis 6:263–268

    Article  Google Scholar 

  36. Chaurio RA, Janko C, Munoz LE, Frey B, Herrmann M, Gaipl US (2009) Molecules 14:4892–4914

    Article  CAS  Google Scholar 

  37. Aussel C, Pelassy C, Breittmayer JP (1998) FEBS Lett 431:195–199

    Article  CAS  Google Scholar 

  38. Uchida K, Emoto K, Daleke DL, Inoue K, Umeda M (1998) J Biochem 123:1073–1078

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant NRF-2010-0014046 and in part by grant NRF-2008-2003136 from the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong Hee Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, R.U., Lim, S., Kim, M.O. et al. Effect of d-allose on prostate cancer cell lines: phospholipid profiling by nanoflow liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 401, 689–698 (2011). https://doi.org/10.1007/s00216-011-5113-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5113-1

Keywords

Navigation