Skip to main content

Advertisement

Log in

MALDI tissue imaging: from biomarker discovery to clinical applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a powerful tool for the generation of multidimensional spatial expression maps of biomolecules directly from a tissue section. From a clinical proteomics perspective, this method correlates molecular detail to histopathological changes found in patient-derived tissues, enhancing the ability to identify candidates for disease biomarkers. The unbiased analysis and spatial mapping of a variety of molecules directly from clinical tissue sections can be achieved through this method. Conversely, targeted IMS, by the incorporation of laser-reactive molecular tags onto antibodies, aptamers, and other affinity molecules, enables analysis of specific molecules or a class of molecules. In addition to exploring tissue during biomarker discovery, the integration of MALDI-IMS methods into existing clinical pathology laboratory practices could prove beneficial to diagnostics. Querying tissue for the expression of specific biomarkers in a biopsy is a critical component in clinical decision-making and such markers are a major goal of translational research. An important challenge in cancer diagnostics will be to assay multiple parameters in a single slide when tissue quantities are limited. The development of multiplexed assays that maximize the yield of information from a small biopsy will help meet a critical challenge to current biomarker research. This review focuses on the use of MALDI-IMS in biomarker discovery and its potential as a clinical diagnostic tool with specific reference to our application of this technology to prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hillenkamp F et al (1991) Anal Chem 63(24):1193A–1203A

    Article  CAS  Google Scholar 

  2. Vestal ML (2009) J Mass Spectrom 44(3):303–317

    Article  CAS  Google Scholar 

  3. Cazares LH et al (2009) Clin Cancer Res 15(17):5541–5551

    Article  CAS  Google Scholar 

  4. Agar NY et al (2010) Methods Mol Biol 656:415–431

    Article  CAS  Google Scholar 

  5. Caldwell RL, Caprioli RM (2005) Mol Cell Proteomics 4(4):394–401

    Article  CAS  Google Scholar 

  6. Chaurand P et al (2005) Toxicol Pathol 33(1):92–101

    Article  CAS  Google Scholar 

  7. Franck J et al (2009) Anal Chem 81(19):8193–8202

    Article  CAS  Google Scholar 

  8. Vegvari A et al (2010) J Proteomics 73(6):1270–1278

    Article  CAS  Google Scholar 

  9. Chaurand P et al (2006) J Proteome Res 5(11):2889–2900

    Article  CAS  Google Scholar 

  10. Cornett DS et al (2006) Mol Cell Proteomics 5(10):1975–1983

    Article  CAS  Google Scholar 

  11. Fournier I, Wisztorski M, Salzet M (2008) Expert Rev Proteomics 5(3):413–424

    Article  CAS  Google Scholar 

  12. Franck J et al (2009) Mol Cell Proteomics 8(9):2023–2033

    Article  CAS  Google Scholar 

  13. Schwamborn K, Caprioli RM (2010) Nat Rev Cancer 10(9):639–646

    Article  CAS  Google Scholar 

  14. Yanagisawa K et al (2003) Lancet 362(9382):433–439

    Article  CAS  Google Scholar 

  15. Reyzer ML et al (2004) Cancer Res 64(24):9093–9100

    Article  CAS  Google Scholar 

  16. Schwartz SA et al (2005) Cancer Res 65(17):7674–7681

    CAS  Google Scholar 

  17. Gofrit ON et al (2007) J Urol 178(5):1925–1928

    Article  Google Scholar 

  18. Herring KD, Oppenheimer SR, Caprioli RM (2007) Semin Nephrol 27(6):597–608

    Article  CAS  Google Scholar 

  19. Oppenheimer SR et al (2010) J Proteome Res 9(5):2182–2190

    Article  CAS  Google Scholar 

  20. Hervouet E et al (2005) Carcinogenesis 26(3):531–539

    Article  CAS  Google Scholar 

  21. Simonnet H et al (2002) Carcinogenesis 23(5):759–768

    Article  CAS  Google Scholar 

  22. Simonnet H et al (2003) Carcinogenesis 24(9):1461–1466

    Article  CAS  Google Scholar 

  23. Finn WG (2007) J Mol Diagn 9(4):431–436

    Article  CAS  Google Scholar 

  24. Allemani C et al (2004) Br J Cancer 91(7):1263–1268

    Article  CAS  Google Scholar 

  25. Hadjisavvas A et al (2002) Ultrastruct Pathol 26(4):237–244

    Article  CAS  Google Scholar 

  26. Rauser S et al (2010) J Proteome Res 9(4):1854–1863

    Article  CAS  Google Scholar 

  27. Wilson KS et al (2002) Am J Pathol 161(4):1171–1185

    Article  CAS  Google Scholar 

  28. Chaurand P et al (2004) Am J Pathol 165(4):1057–1068

    Article  CAS  Google Scholar 

  29. Cornett DS et al (2007) Nat Methods 4(10):828–833

    Article  CAS  Google Scholar 

  30. Hsieh Y, Chen J, Korfmacher WA (2007) J Pharmacol Toxicol Methods 55(2):193–200

    Article  CAS  Google Scholar 

  31. Reyzer ML, Caprioli RM (2007) Curr Opin Chem Biol 11(1):29–35

    Article  CAS  Google Scholar 

  32. Hsieh Y et al (2006) Rapid Commun Mass Spectrom 20(6):965–972

    Article  CAS  Google Scholar 

  33. Cornett DS, Frappier SL, Caprioli RM (2008) Anal Chem 80(14):5648–5653

    Article  CAS  Google Scholar 

  34. Groseclose MR et al (2008) Proteomics 8(18):3715–3724

    Article  CAS  Google Scholar 

  35. Lemaire R et al (2007) J Proteome Res 6(4):1295–1305

    Article  CAS  Google Scholar 

  36. Morita Y et al (2009) Cancer Sci 101(1):267–273

    Article  Google Scholar 

  37. Ronci M et al (2008) Proteomics 8(18):3702–3714

    Article  CAS  Google Scholar 

  38. Chaurand P et al (2008) J Proteome Res 7(8):3543–3555

    Article  CAS  Google Scholar 

  39. Ergin B et al (2010) J Proteome Res 9(10):5188–5196

    Article  CAS  Google Scholar 

  40. Morales AR et al (2004) Am J Clin Pathol 121(4):528–536

    Article  Google Scholar 

  41. Vincek V et al (2003) Lab Invest 83(10):1427–1435

    Article  CAS  Google Scholar 

  42. Nadji M et al (2005) Appl Immunohistochem Mol Morphol 13(3):277–282

    Article  CAS  Google Scholar 

  43. Skrzydlewska E et al (2005) World J Gastroenterol 11(9):1251–1266

    Google Scholar 

  44. Chaurand P et al (2001) Proteomics 1(10):1320–1326

    Article  CAS  Google Scholar 

  45. Shimma S et al (2007) J Chromatogr B Anal Technol Biomed Life Sci 855:98–103

    Google Scholar 

  46. Shimma S et al (2008) Anal Chem 80(3):878–885

    Article  CAS  Google Scholar 

  47. Lemaire R et al (2007) J Proteome Res 6(11):4127–4134

    Article  CAS  Google Scholar 

  48. Bahr U et al (1997) J Mass Spectrom 32(10):1111–1116

    Article  CAS  Google Scholar 

  49. Westmacott G et al (2000) Rapid Commun Mass Spectrom 14(7):600–607

    Article  CAS  Google Scholar 

  50. van Remoortere A et al (2010) J Am Soc Mass Spectrom 21(11):1922–1929

    Google Scholar 

  51. Leinweber BD et al (2009) J Am Soc Mass Spectrom 20(1):89–95

    Article  CAS  Google Scholar 

  52. Groseclose MR et al (2007) J Mass Spectrom 42(2):254–262

    Article  CAS  Google Scholar 

  53. Yang Z et al (2007) Mol Endocrinol 21(2):343–358

    Article  CAS  Google Scholar 

  54. Simon R (2010) Methods Mol Biol 664:1–16

    Article  CAS  Google Scholar 

  55. Djidja MC et al (2010) Anal Bioanal Chem 397(2):587–601

    Article  CAS  Google Scholar 

  56. Rojo MG, Bueno G, Slodkowska J (2009) Folia Histochem Cytobiol 47(3):349–354

    Article  Google Scholar 

  57. Sweeney E et al (2008) Biochem Biophys Res Commun 374(2):181–186

    Article  CAS  Google Scholar 

  58. Thiery G et al (2007) Rapid Commun Mass Spectrom 21(6):823–829

    Article  CAS  Google Scholar 

  59. Thiery G et al (2008) Proteomics 8(18):3725–3734

    Article  CAS  Google Scholar 

  60. Lemaire R et al (2007) J Proteome Res 6(6):2057–2067

    Article  CAS  Google Scholar 

  61. Ustinov AV et al (2008) Org Biomol Chem 6(24):4593–4608

    Article  CAS  Google Scholar 

  62. Cheng Y et al (2010) Sci China Ser B Chem 53:3–20

    Article  CAS  Google Scholar 

  63. Fukuda M, Hindsgaul O (eds) (1994) Molecular glycobiology. Oxford University Press, New York, pp 1–52

    Google Scholar 

  64. Wang B, Boons G-J (eds) (2011) Carbohydrate recognition: biological problems, methods, and potential applications. Wiley, Hoboken

    Google Scholar 

  65. Burroughs S, Wang B (2010) ChemBioChem 11(16):2245–2246. doi:10.1002/cbic.201000462

    Article  CAS  Google Scholar 

  66. Jin S et al (2010) Med Res Rev 30(2):171–257

    CAS  Google Scholar 

  67. Pal A, Bérubé M, Hall DG (2010) Angew Chem Int Ed 49:1492–1495

    CAS  Google Scholar 

  68. Yang W et al (2004) Chem Biol 11:439–448

    Article  CAS  Google Scholar 

  69. Yang W et al (2002) Bioorg Med Chem Lett 12:2175–2177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. John Semmes.

Additional information

Published in the special issue MALDI Imaging with Guest Editor Olivier Laprévote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazares, L.H., Troyer, D.A., Wang, B. et al. MALDI tissue imaging: from biomarker discovery to clinical applications. Anal Bioanal Chem 401, 17–27 (2011). https://doi.org/10.1007/s00216-011-5003-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5003-6

Keywords

Navigation