Skip to main content

Advertisement

Log in

Novel molecular tumour classification using MALDI–mass spectrometry imaging of tissue micro-array

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of tissue micro-array (TMA) technologies provides insights into high-throughput analysis of proteomics patterns from a large number of archived tumour samples. In the work reported here, matrix-assisted laser desorption/ionisation–ion mobility separation–mass spectrometry (MALDI–IMS–MS) profiling and imaging methodology has been used to visualise the distribution of several peptides and identify them directly from TMA sections after on-tissue tryptic digestion. A novel approach that combines MALDI–IMS–MSI and principal component analysis–discriminant analysis (PCA–DA) is described, which has the aim of generating tumour classification models based on protein profile patterns. The molecular classification models obtained by PCA–DA have been validated by applying the same statistical analysis to other tissue cores and patient samples. The ability to correlate proteomic information obtained from samples with known and/or unknown clinical outcome by statistical analysis is of great importance, since it may lead to a better understanding of tumour progression and aggressiveness and hence improve diagnosis, prognosis as well as therapeutic treatments. The selectivity, robustness and current limitations of the methodology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang J, Bø TH, Jonassen I et al (2003) Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics 4:60

    Article  CAS  Google Scholar 

  2. Demichelis F, Magni P, Piergiorgi P et al (2006) A hierarchical naïve Bayes model for handling sample heterogeneity in classification problems: an application to tissue microarrays. BMC Bioinformatics 7:514

    Article  Google Scholar 

  3. Abd El-Rehim DM, Ball G, Pinder SE et al (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116:340–350

    Article  CAS  Google Scholar 

  4. Battifora H, Mehta P (1990) The checkerboard tissue block. An improved multitissue control block. Lab Invest 63:722–724

    CAS  Google Scholar 

  5. Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  CAS  Google Scholar 

  6. Rosen DG, Huang X, Deavers MT et al (2004) Validation of tissue microarray technology in ovarian carcinoma. Mod Pathol 17:790–797

    Article  CAS  Google Scholar 

  7. Kleiner HE, Krishnan P, Tubbs J et al (2009) Tissue microarray analysis of eIF4E and its downstream effector proteins in human breast cancer. J Exp Clin Cancer Res 28:5

    Article  Google Scholar 

  8. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  Google Scholar 

  9. Chaurand P, Schwartz SA, Caprioli RM (2004) Assessing protein patterns in disease using imaging mass spectrometry. J Proteome Res 3:245–252

    Article  CAS  Google Scholar 

  10. Stoeckli M, Staab D, Schweitzer A et al (2007) Imaging of a beta-peptide distribution in whole-body mice sections by MALDI mass spectrometry. J Am Soc Mass Spectrom 18:1921–1924

    Article  CAS  Google Scholar 

  11. Chaurand P, Sanders ME, Jensen RA, Caprioli RM (2004) Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am J Pathol 165:1057–1068

    CAS  Google Scholar 

  12. Reyzer ML, Caldwell RL, Dugger TC et al (2004) Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics. Cancer Res 64:9093–9100

    Article  CAS  Google Scholar 

  13. Groseclose MR, Massion PP, Chaurand P, Caprioli RM (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8:3715–3724

    Article  CAS  Google Scholar 

  14. Djidja M, Carolan V, Loadman PM, Clench MR (2008) Method development for protein profiling in biological tissues by matrix-assisted laser desorption/ionisation mass spectrometry imaging. Rapid Commun Mass Spectrom 22:1615–1618

    Article  CAS  Google Scholar 

  15. Trim PJ, Atkinson SJ, Princivalle AP et al (2008) Matrix-assisted laser desorption/ionisation mass spectrometry imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis. Rapid Commun Mass Spectrom 22:1503–1509

    Article  CAS  Google Scholar 

  16. Deininger SO, Ebert MP, Fütterer A et al (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res 7:5230–5236

    Article  CAS  Google Scholar 

  17. Lemaire R, Desmons A, Tabet JC et al (2007) Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J Proteome Res 6:1295–1305

    Article  CAS  Google Scholar 

  18. Djidja MC, Francese S, Loadman PM et al (2009) Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics 9:2750–2763

    Article  CAS  Google Scholar 

  19. Armstrong DW, Zhang LK, He L, Gross ML (2001) Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 73:3679–3686

    Article  CAS  Google Scholar 

  20. Lemaire R, Tabet JC, Ducoroy P et al (2006) Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem 78:809–819

    Article  CAS  Google Scholar 

  21. Pringle SD, Giles K, Wildgoose JL et al (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261:1–12

    Article  CAS  Google Scholar 

  22. Riba-Garcia I, Giles K, Bateman RH, Gaskell SJ (2008) Evidence for structural variants of a- and b-type peptide fragment ions using combined ion mobility/mass spectrometry. J Am Soc Mass Spectrom 19:609–613

    Article  CAS  Google Scholar 

  23. Xia Q, Wang HX, Wang J et al (2004) Nano-ESI–MS/MS identification on differentiation-associated proteins in M1 mouse myeloid leukemia cells induced by IL-6. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 26:483–487

    CAS  Google Scholar 

  24. Hoogerbrugge R, Willig SJ, Kistemaker PG (1983) Discriminant analysis by double stage principal component analysis. Anal Chem 55:1710–1712

    Article  CAS  Google Scholar 

  25. Defernez M, Kemsley EK (1997) The use and misuse of chemometrics for treating classification problems. TrAC Trends Anal Chem 16:216–221

    Article  Google Scholar 

  26. Neoptolemos JP, Dunn JA, Stocken DD et al (2001) Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet 358:1576–1585

    Article  CAS  Google Scholar 

  27. Armstrong T, Packham G, Murphy LB et al (2004) Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10:7427–7437

    Article  CAS  Google Scholar 

  28. Ariapart P, Bergstedt-Lindqvist S, van Harmelen V et al (2002) Resection of pancreatic cancer normalizes the preoperative increase of tumor necrosis factor alpha gene expression. Pancreatology 2:491–494

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by funding from the Sheffield Hallam University Clinical Research Fellow scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm R. Clench.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 640 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djidja, MC., Claude, E., Snel, M.F. et al. Novel molecular tumour classification using MALDI–mass spectrometry imaging of tissue micro-array. Anal Bioanal Chem 397, 587–601 (2010). https://doi.org/10.1007/s00216-010-3554-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3554-6

Keywords

Navigation