Skip to main content
Log in

Confocal MXRF in environmental applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this review we highlight the performance of confocal micro X-ray fluorescence (CMXRF) for application in environmental science, citing contributions from recent studies (2008–2010). In CMXRF the use of focusing and collecting optics enables discrimination of the origin of fluorescence photons in three dimensions. It thereby enables simple and direct three dimensional imaging, and also the removal of unwanted signal contribution either from the depth of the sample or from its surface. By limiting the area of origin of fluorescence signal CMXRF can simplify quantitative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thieme J, Gleber S-C, Guttmann P, Prietzel J, McNulty I, Coates J (2008) Microscopy and spectroscopy with X-rays for studies in the environmental sciences. Miner Mag 72(1):211–216

    Article  CAS  Google Scholar 

  2. Punshon T, Guerinot ML, Lanzirotti A (2009) Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. Ann Bot 103(5):665–672

    Article  CAS  Google Scholar 

  3. Lombi E, Susini J (2009) Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 320(1–2):1–35

    Article  CAS  Google Scholar 

  4. Gibson WM, Kumakhov MA (1992) Applications of x-ray and neutron capillary optics. Proc SPIE 1736:172

    Article  Google Scholar 

  5. Ding X, Gao N, Havrilla GJ (2000) Monolithic polycapillary x-ray optics engineered to meet a wide range of applications. Proc SPIE Int Soc Opt Eng 4144:174–182 (Advances in Laboratory-Based X-Ray Sources and Optics)

    CAS  Google Scholar 

  6. Kanngiesser B, Malzer M, Reiche I (2003) A new 3D micro X-ray fluorescence analysis set-up–First archaeometric applications. Nucl Instrum Methods Phys Res Sect B 211:259

    Article  CAS  Google Scholar 

  7. Smit Z, Janssens K, Proost K, Langus I (2004) Confocal μ-XRF depth analysis of paint layers. Nucl Instrum Methods Phys Res, Sect B 219–220:35–40

    Article  Google Scholar 

  8. De Samber B, Doctorate Thesis, University of Gent, Belgium (2010) Spatially resolved X-ray micro/nano-spectroscopy and imaging on the model organism Daphnia Magna using laboratory and synchrotron sources, http://hdl.handle.net/1854/LU-911817

  9. Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 31(4):331–343

    CAS  Google Scholar 

  10. Triglav J, van Elteren JT, Selih VS (2010) Basic modeling approach to optimize elemental imaging by laser ablation ICPMS. Anal Chem 82(19):8153–8160

    Article  CAS  Google Scholar 

  11. Gholapa DS, Izmera A, De Samber B, van Elteren JT, Selih VS, Evensc R, De Schamphelaere K, Janssen C, Balcaena L, Lindemann I, Vincze L, Vanhaecke F (2010) Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia magna. Anal Chim Acta 664(1):19–26

    Article  Google Scholar 

  12. McPhail DS (2006) Application of secondary ion mass spectrometry (SIMS) in material science. J Mat Sci 41(3):873–903

    Article  CAS  Google Scholar 

  13. Nakano K, Tsuji K (2009) Nondestructive elemental depth profiling of Japanese lacquerware Tamamushi-nuri' by confocal 3D-XRF analysis in comparison with micro GE-XRF. X-Ray Spectrom 38(5):446–450

    Article  CAS  Google Scholar 

  14. Schmitz S, Brenker FE, Schoonjans T, Vekemans B, Silversmit G, Vincze L, Burghammer M, Riekel C (2009) In situ identification of a CAI candidate in 81P/Wild 2 cometary dust by confocal high resolution synchrotron X-ray fluorescence. Geochim Cosmochim Acta 73(18):5483–5492

    Article  CAS  Google Scholar 

  15. Silversmit G, Vekemans B, Nikitenko S, Schmitz S, Schoonjans T, Brenker FE, Vincze L (2010) Spatially resolved 3D micro-XANES by a confocal detection scheme. Phys Chem Chem Phys 12(21):5653–5659

    Article  CAS  Google Scholar 

  16. Perez RD, Sanchez HJ, Perez CA, Rubio M (2009) Latest developments and opportunities for 3D analysis of biological samples by confocal μ-XRF. Radiat Phys Chem 79(2):195–200

    Article  Google Scholar 

  17. Schroer C (2001) Reconstructing x-ray fluorescence microtomograms. Appl Phys Lett 79(12):1912

    Article  CAS  Google Scholar 

  18. Vincze L (2004) Developments in X-ray tomography IV. In: Bonse U (ed) X-ray fluorescence microtomography and polycapillary based confocal imaging using synchrotron radiation. SPIE Bellingham, Washington

    Google Scholar 

  19. de Jonge MD, Vogt S (2010) Hard X-ray fluorescence tomography —an emerging tool for structural visualization. Curr Opin Struct Biol 20:606–614

    Article  Google Scholar 

  20. de Jonge MD, Holzner C, Baines SB, Twining BS, Ignatyev K, Diaz J, Howard DL, Legnini D, Miceli A, McNulty I, Jacobsen CJ, Vogt S (2010) Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution. Proc Natl Acad Sci USA 107(36):15676–15680

    Article  Google Scholar 

  21. Janssens K, Vekemans B, Vincze L, Adams F, Rindby A (1996) A micro-XRF spectrometer based on a rotating anode generator and capillary optics. Spectrochim Acta Part B 51(13):1661–16678

    Article  Google Scholar 

  22. Worley C, Havrilla GJ, Gao N, Xiao Q-F (2000) Optimizing the elemental sensitivity and focal spot size of a monolithic polycapillary optic using micro-x-ray fluorescence. Adv X-ray Analysis 42:26–35

    CAS  Google Scholar 

  23. Matsuyama S, Shimura M, Mimura H, Fujii M, Yumoto H, Sano Y, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T, Yamauchi K (2009) Trace elemental mapping of single cell using a hard X-ray nanobeam focused by a Kirkpatrick-Baez mirror system. X-Ray Spectrom 38(2):89–94

    Article  CAS  Google Scholar 

  24. Pfeiffer F, David C, van der Veen JF, Bergemann C (2006) Nanometer focusing properties of Fresnel zone plates described by dynamical diffraction theory. Phys Rev, B, Condens Matter Mater Phys 73(24):245331/1–245331/10

    Article  CAS  Google Scholar 

  25. David C, Souvorov A (1999) High-efficiency Bragg-Fresnel lenses with 100 nm outermost zone width. Rev Sci Instrum 70(11):4168–4173

    Article  CAS  Google Scholar 

  26. Awaji M, Suzuki Y, Takeuchi A, Takano H, Kamijo N, Yasumoto M, Terada Y, Tamura S (2003) Microfocusing of 82 keV X-rays with a sputtered-sliced Fresnel zone plate. Rev Sci Instrum 74(11):4948–4949

    Article  CAS  Google Scholar 

  27. Simon R, Nazmov V, Reznikova E, Mohr J, Saile V (2006) Hard X-ray imaging and microscopy with lithographic CRL developed at ANKA Synchrotron Radiation Facility. Jpap Conf Ser 7:115–116

    CAS  Google Scholar 

  28. Horntrich C, Smolek S, Maderitsch A, Simon R, Kregsamer P, Streli C (2011) Investigation of element distribution and homogeneity of TXRF samples using SR-micro-XRF to validate the use of an internal standard and improve external standard quantification. Anal Bioanal Chem. doi:10.1007/s00216-010-4592-9

    Google Scholar 

  29. Schroer CG, Brenner B, Gunzler TF, Kuhlmann M, Zimprich C, Lengeler B, Rau C, Weitkamp T, Singirev A, Singirev I, Appenzeller J (2002) High resolution imaging and lithography with hard X-ray using parabolic compound refractive lenses. Rev Sci Instrum 73:1640–1642

    Article  CAS  Google Scholar 

  30. Strub E, Radtke M, Reinholz U, Riesemeier H, Reznikova E (2008) Measurements with compound refractive lenses at the “BAMline”. Nucl Instrum Methods Phys Res, Sect B 266:2165–2168

    Article  CAS  Google Scholar 

  31. Vincze L, Vekemans B, Brenker FE, Falkenberg G, Rickers K, Somogyi A, Kersten M, Adams F (2004) Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging. Anal Chem 76(22):6786–6791

    Article  CAS  Google Scholar 

  32. Janssens K, Proost K, Falkenberg G (2004) Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: characteristics and possibilities. Spectrochim Acta B 59(10–11):1637–1645

    Article  Google Scholar 

  33. Bulska E, Wysocka IA, Wierzbicka MH, Proost K, Jamssens K, Falkenberg G (2006) In vivo investigation of the distribution and the local speciation of selenium in Allium cepa L. by means of microscopic X-ray absorption near-edge structure spectroscopy and confocal microscopic X-ray fluorescence analysis. Anal Chem 78(22):7616–7624

    Article  Google Scholar 

  34. Kanngiesser B, Malzer W, Reiche I (2003) A new 3D micro X-ray fluorescence analysis set-up – First archaeometric applications. Nucl Instrum Methods Phys Res Sect B 211(2):259–264

    Article  CAS  Google Scholar 

  35. Denecke MA, Janssens K, Simon R, Nazmov V, Noseck U (2005) Spatially resolved micro X-ray fluorescence investigation of a uranium-rich sediment. Nachrichten - Forschungszentrum Karlsruhe 37(4):175–178

    CAS  Google Scholar 

  36. Woll AR, Mass J, Bisulca C, Huang R, Bilderback DH, Gruner S, Gao N (2006) Development of confocal x-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. Appl Phys A 83(2):235–238

    Article  CAS  Google Scholar 

  37. Erko A, Zizak I (2009) Hard X-ray micro-spectroscopy at Berliner Elektronenspeicherring fuer Synchrotronstrahlung. Spectrochim Acta B 64(9):833–848

    Article  Google Scholar 

  38. Wilke M, Appel K, Vincze L, Schmidt C, Borchert M, Pascarelli S (2010) A confocal set-up for micro-XRF and XAFS experiments using diamond-anvil cells. J Synchrotron Radiat 17(5):669–675

    Article  CAS  Google Scholar 

  39. Sun T, Ding X, Liu Z, Zhu G, Li Y, Wei X, Chen D, Xu Q, Liu Q, Huang Y, Lin X, Sun H (2008) Characterization of a confocal three-dimensional micro x-ray fluorescence facility based on polycapillary x-ray optics and Kirkpatrick-Baez mirrors. Spectrochimica Acta, Part B 63(1):76–80

    Article  Google Scholar 

  40. Perez RD, Sanchez HJ, Perez CA, Rubio M (2009) Quantification of multilayer samples by confocal μ-XRF. AIP Conference Proceedings 1092:107–111, Synchrotron Radiation in Materials Science

    Article  CAS  Google Scholar 

  41. Havrilla GJ, Hastings E (2005) Confocal micro X-ray fluorescence microscope: 3-D elemental imaging. Abstracts of Papers, 230th ACS National Meeting, Washington, DC, United States: ANYL-016

  42. Kanngiesser B, Malzer M, Rodriguez AF, Reiche I (2005) Three-dimensional micro-XRF investigations of paint layers with a tabletop setup. Spectrochim Acta B 60:41

    Article  Google Scholar 

  43. Janssens K, De Nolf W, Van Der Snickt G, Vincze L, Vekemans B, Terzano R, Brenker FE (2010) Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis. Trends Anal Chem 29(6):464–478

    Article  CAS  Google Scholar 

  44. Vekemans B, Vincze L, Brenker FE, Adams F (2004) Processing of three-dimensional microscopic X-ray fluorescence data. J Anal At Spectrom 19(10):1302–1308

    Article  CAS  Google Scholar 

  45. Malzer W, Kanngiesser B (2005) A model for the confocal volume of 3D micro X-ray fluorescence spectrometer. Spectrochim Acta B 60(9–10):1334–1341

    Article  Google Scholar 

  46. Sokaras D, Karydas A-G (2009) Secondary fluorescence enhancement in confocal X-ray microscopy analysis. Anal Chem 81(12):4946–4954

    Article  CAS  Google Scholar 

  47. Mantouvalou I, Malzer W, Schaumann I, Luehl L, Dargel R, Vogt C, Kanngiesser B (2008) Reconstruction of thickness and composition of stratified materials by means of three-dimensional micro x-ray fluorescence spectroscopy. Anal Chem 80(3):819–826

    Article  CAS  Google Scholar 

  48. Schaumann I, Malzer W, Mantouvalou I, Luehl L, Kanngiesser B, Dargel R, Giese U, Vogt C (2009) Preparation and characterization of polymer layer systems for validation of 3D Micro X-ray fluorescence spectroscopy. Spectrochim Acta B 64(4):334–340

    Article  Google Scholar 

  49. Nakano K, Tsuji K (2010) Development of laboratory confocal 3D-XRF spectrometer and nondestructive depth profiling. J Anal At Spectrom 25(4):562–569

    Article  CAS  Google Scholar 

  50. Fittschen UEA, Bings NH, Hauschild S, Forster S, Kiera AF, Karavani E, Fromsdorf A, Thiele J, Falkenberg G (2008) Characteristics of picoliter droplet dried residues as standards for direct analysis techniques. Anal Chem 80(6):1967–1977

    Article  CAS  Google Scholar 

  51. Fittschen UEA, Havrilla GJ (2010) Picoliter droplet deposition using a prototype picoliter pipette: control parameters and application in micro X-ray fluorescence. Anal Chem 82(1):297–306

    Article  CAS  Google Scholar 

  52. Patterson BM, Campbell J, Havrilla GJ (2010) Integrating 3D images using laboratory-based micro X-ray computed tomography and confocal X-ray fluorescence techniques. X-Ray Spectrom 39:184–190

    Article  CAS  Google Scholar 

  53. De Samber B, Evens R, De Schamphelaere K, Silversmit G, Masschaele B, Schoonjans T, Vekemans B, Janssen CR, Van Hoorebeke L, Szaloki I, Vanhaecke F, Falkenberg G, Vincze L (2008) A combination of synchrotron and laboratory X-ray techniques for studying tissue-specific trace level metal distributions in Daphnia magna. J Anal At Spectrom 23:829–839

    Article  Google Scholar 

  54. Zoeger N, Streli C, Wobrauschek P, Jokubonis C, Pepponi G, Roschger P, Hofstaetter J, Berzlanovich A, Wegrzynek D, Chinea-Cano E, Markowicz A, Simon R, Falkenberg G (2008) Determination of the elemental distribution in human joint bones by SR micro XRF. X-Ray Spectrom 37(1):3–11

    Article  CAS  Google Scholar 

  55. Tsuji K, Yonehara T, Nakano K (2008) Application of confocal 3D micro-XRF for solid/liquid interface analysis. Anal Sci 24(1):99–103

    Article  CAS  Google Scholar 

  56. De Samber B, Silversmit G, De Schamphelaere K, Evens R, Schoonjans T, Vekemans B, Janssen C, Masschaele B, Van Hoorebeke L, Szaloki I, Vanhaecke F, Rickers K, Falkenberg G, Vincze L (2010) Element-to-tissue correlation in biological samples determined by three-dimensional X-ray imaging methods. J Anal At Spectrom 25(4):544–553

    Article  Google Scholar 

  57. De Samber B, Evens R, Boone M, De Schamphelaere K, Van Hoorebeke L, Janssen C, Falkenberg G, Appel K, Vincze L (2010) 3D elemental imaging of the crustacean Ceriodaphnia by means of SR confocal micro-XRF, Hasylab annual Report in Press

  58. Schmitz S, Moeller A, Wilke M, Malzer W, Kanngiesser B, Bousquet R, Berger A, Schefer S (2009) Chemical U-Th-Pb dating of monazite by 3D-micro X-ray fluorescence analysis with synchrotron radiation. Eur J Mineral 21(5):927–945

    Article  CAS  Google Scholar 

  59. Sun T, Liu Z, Li Y, Lin X, Wang G, Zhu G, Xu Q, Luo P, Pan Q, Liu H, Ding X (2010) Quantitative analysis of single aerosol particles with confocal micro-X-ray fluorescence spectrometer. Nucl Instrum Methods Phys Res, Sect A 622(1):295–297

    Article  CAS  Google Scholar 

  60. Bielewski M, Himbert J, Niagolova N, Falkenberg G, Eriksson M, Betti M (2008) Nondestructive spectrometric study on a radioactive particle embedded in a marine sediment. Microsc Microanal 14(4):321–327

    Article  CAS  Google Scholar 

  61. Jimenez-Ramos MC, Eriksson M, Garcia-Lopez J, Ranebo Y, Garcia-Tenorio R, Betti M, Holm E (2010) A comparison of two micro-beam X-ray emission techniques for actinide elemental distribution in microscopic particles originating from the hydrogen bombs involved in the Palomares (Spain) and Thule (Greenland) accidents. Spectrochim Acta B 65(9–10):823–829

    Article  Google Scholar 

  62. Denecke MA, Brendebach B, De Nolf W, Falkenberg G, Janssens K, Simon R (2009) Spatially resolved micro-X-ray fluorescence and micro-X-ray absorption fine structure study of a fractured granite bore core following a radiotracer experiment. Spectrochim Acta B 64:791–795

    Article  Google Scholar 

  63. Denecke MA, Michel P, Schäfer T, Huber F, Rickers K, Rothe J, Dardenne K, Brendebach B, Vitova T, Elie M (2009) Spatially resolved XRF, XAFS, XRD, STXM and IR investigation of a natural U-rich clay. J Phys Conf Ser 190:012187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Elisabeth Adriane Fittschen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fittschen, U.E.A., Falkenberg, G. Confocal MXRF in environmental applications. Anal Bioanal Chem 400, 1743–1750 (2011). https://doi.org/10.1007/s00216-011-4873-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4873-y

Keywords

Navigation