Skip to main content

Resolution and Performance of 3D Confocal Raman Imaging Systems

  • Chapter
  • First Online:
Confocal Raman Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 66))

Abstract

Confocal Raman microscopes are the instruments of choice for chemical characterization in a wide variety of applications including geosciences (Jenniskens et al., in Nature 458(7237): 485, 2009 [1]), (Rotundi et al., in Planet Sci 43(1–2):367, 2008, [2]), (Heim et al., Geobiology in 10(4):280, 2012 [3]), biology (Hild et al., in J Struct Biol 168(3):426, 2009 [4]), (Gierlinger and Schwanninger, in J Spectrosc 21(2):69, 2007 [5]), (Hermelink et al., in Analyst 134(6):1149, 2009 [6]), nano-carbon materials (Xu et al., in ACS nano 5(1):147, 2010 [7]), (You et al., in Appl Phys Lett 93(10):103111, 2008 [8]), (Yu et al., in J Phys Chem C 112(33):12602, 2008 [9]) and pharmaceutics (Matthäus et al., in Mol Pharm 5(2):287, 2008 [10]), (Chernenko et al., in ACS nano 3(11):3552, 2009 [11]) to name but a few. Many pertinent examples can be found within this book. This chapter intends to shed light on the possibilities of confocal Raman systems in general, while briefly reviewing their origins and describing considerations such as spectral and spatial resolution as well as throughput. 3D confocal Raman imaging as well as compensation for surface topography during a confocal Raman image scan will also be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sample curtesy José M.F. Swart, AkzoNobel Chemicals bv, Deventer, The Netherlands.

  2. 2.

    https://imagej.nih.gov/ij/.

References

  1. P. Jenniskens, M. Shaddad, D. Numan, S. Elsir, A. Kudoda, M. Zolensky, L. Le, G. Robinson, J. Friedrich, D. Rumble et al., Nature 458(7237), 485 (2009)

    Article  ADS  Google Scholar 

  2. A. Rotundi, G. Baratta, J. Borg, J. Brucato, H. Busemann, L. Colangeli, L. d’Hendecourt, Z. Djouadi, G. Ferrini, I. Franchi et al., Meteorit. Planet. Sci. 43(1–2), 367 (2008)

    Article  ADS  Google Scholar 

  3. C. Heim, J. Lausmaa, P. Sjövall, J. Toporski, T. Dieing, K. Simon, B. Hansen, A. Kronz, G. Arp, J. Reitner et al., Geobiology 10(4), 280 (2012)

    Article  Google Scholar 

  4. S. Hild, F. Neues, N. Žnidaršič, J. Štrus, M. Epple, O. Marti, A. Ziegler, J. Struct. Biol. 168(3), 426 (2009)

    Article  Google Scholar 

  5. N. Gierlinger, M. Schwanninger, J. Spectrosc. 21(2), 69 (2007)

    Article  Google Scholar 

  6. A. Hermelink, A. Brauer, P. Lasch, D. Naumann, Analyst 134(6), 1149 (2009)

    Article  ADS  Google Scholar 

  7. Y.N. Xu, D. Zhan, L. Liu, H. Suo, Z.H. Ni, T.T. Nguyen, C. Zhao, Z.X. Shen, ACS Nano 5(1), 147 (2010)

    Article  Google Scholar 

  8. Y. You, T. Yu, J. Kasim, H. Song, X. Fan, Z. Ni, L. Cao, H. Jiang, D. Shen, J. Kuo et al., Appl. Phys. Lett. 93(10), 103111 (2008)

    Article  ADS  Google Scholar 

  9. T. Yu, Z. Ni, C. Du, Y. You, Y. Wang, Z. Shen, J. Phys. Chem. C 112(33), 12602 (2008)

    Article  Google Scholar 

  10. C. Matthäus, A. Kale, T. Chernenko, V. Torchilin, M. Diem, Mol. Pharm. 5(2), 287 (2008)

    Article  Google Scholar 

  11. T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, M. Diem, ACS Nano 3(11), 3552 (2009)

    Article  Google Scholar 

  12. L. Rayleigh, Lond. Edinburgh Dublin Phil. Mag. J. Sci. 42(255), 167 (1896)

    Article  Google Scholar 

  13. R. Millar, K. Gallacher, A. Samarelli, J. Frigerio, D. Chrastina, T. Dieing, G. Isella, D. Paul, Thin Solid Films (2015)

    Google Scholar 

  14. R. Millar, K. Gallacher, A. Samarelli, J. Frigerio, D. Chrastina, G. Isella, T. Dieing, D. Paul, Opt. Express (2015)

    Google Scholar 

  15. M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990)

    Google Scholar 

  16. F. Adar, (2010). http://www.spectroscopyonline.com/depth-resolution-raman-microscope-optical-limitations-and-sample-characteristics

  17. C.A. Mack, Microlith. World 13(1), 14 (2004)

    Google Scholar 

  18. S. Wilhelm, B. Gröbler, M. Gluch, H. Heinz, Jena, Germany: Carl Zeiss Advanced Imaging Microscopy p. 258 (2003). http://zeiss-campus.magnet.fsu.edu/referencelibrary/pdfs/ZeissConfocalPrinciples.pdf

  19. N. Everall, Spectrosc.-Springfield Eugene Duluth- 19, 22 (2004)

    Google Scholar 

  20. N. Everall, Spectrosc.-Springfield Eugene Duluth- 19, 16 (2004)

    Google Scholar 

  21. N. Everall, J. Raman Spectrosc. 45(1), 133 (2014)

    Article  ADS  Google Scholar 

  22. P. Lasch, A. Hermelink, D. Naumann, Analyst 134(6), 1162 (2009)

    Article  ADS  Google Scholar 

  23. WITec GmbH. True surface microscopy (2017). http://www.witec.de/products/accessories/truesurface/

  24. S. Ayas, G. Cinar, A.D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, et al., Sci. Rep. 3 (2013)

    Google Scholar 

  25. C. Roider, M. Ritsch-Marte, A. Jesacher, Opt. Lett. 41(16), 3825 (2016)

    Article  ADS  Google Scholar 

  26. R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Chem. Phys. Lett. 318(1), 131 (2000)

    Article  ADS  Google Scholar 

  27. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Opt. Commun. 183(1), 333 (2000)

    Article  ADS  Google Scholar 

  28. M.S. Anderson, Appl. Phys. Lett. 76(21), 3130 (2000)

    Article  ADS  Google Scholar 

  29. E. Bailo, V. Deckert, Chem. Soc. Rev. 37(5), 921 (2008)

    Article  Google Scholar 

  30. T. Schmid, L. Opilik, C. Blum, R. Zenobi, Angew. Chem. Int. Ed. 52(23), 5940 (2013)

    Article  Google Scholar 

  31. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J.J. Urban, Y. Pang, R. Gordon, J. Bokor, M.B. Salmeron, D.F. Ogletree et al., Nano Lett. 11(3), 1201 (2011)

    Article  ADS  Google Scholar 

  32. G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, A. Sasso, ACS Nano 8(12), 12300 (2014)

    Article  Google Scholar 

  33. G. Zito, G. Rusciano, A. Vecchione, G. Pesce, R. Di Girolamo, A. Malafronte, A. Sasso, Sci. Rep. 6 (2016)

    Google Scholar 

  34. K. Burns, K.B. Adams, J. Longwell, JOSA 40(6), 339 (1950)

    Article  ADS  Google Scholar 

  35. G. Norlén, Physica Scripta 8(6), 249 (1973)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Proofreading by Olaf Hollricher and Damon Strom is gratefully acknowledged. Wolfram Ibach performed the measurements and prepared the images for Figs. 6.16 and 6.17 and was of immense help in many discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dieing .

Editor information

Editors and Affiliations

A. Appendix

A. Appendix

1.1 A.1 Ideal Performance Test Samples

Based on the methods and theories described in this chapter, ideal samples for performance determination are outlined in the following. An ideal system can achieve optimal results for each of the categories in the same configuration.

1.1.1 A.1.1 Lateral Resolution

Ideal sample: Isolated Single- or Multi-walled Carbon Nano-Tubes (CNTs)

  • Recommended maximum diameter: 75 nm

  • Recommended minimum length: 1 \(\upmu \)m

  • Recommended substrate: Si or glass (required for resolution determination using immersion objectives)

1.1.2 A.1.2 Depth Resolution and Confocality

Ideal sample: Suspended Graphene or Ultrathin Graphite or Si when using only the rising flank of the depth profile

  • Recommended maximum sample thickness (for suspended samples): 50 nm

  • Recommended minimum hole diameter (for the suspended part): 5–10 \(\upmu \)m

  • Recommended substrate: Si

1.1.3 A.1.3 Spectral Resolution

Ideal sample: Atomic Emission Lines

The emission should be guided along exactly the same beam path as the scattered Raman light.

  • Recommended emission lines: Within the Raman detection range.

    532 nm: Hg @ 546.0735 nm [34]

    785 nm: Ar @ 912.2967 nm [35]

1.1.4 A.1.4 Throughput

Ideal sample: Si

Crucial parameters for possible comparison:

  • Laser power

  • Laser wavelength

  • Objective

  • Spectral dispersion @ \(\approx \)1950 rel. cm\(^{-1}\)

  • Integration time

  • Confocality (measured by comparison of the peak height of the 4th order Si peak relative to the intensity of the O\(_\text {2}\) and N\(_\text {2}\) emission lines - see Fig. 6.15).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dieing, T. (2018). Resolution and Performance of 3D Confocal Raman Imaging Systems. In: Toporski, J., Dieing, T., Hollricher, O. (eds) Confocal Raman Microscopy. Springer Series in Surface Sciences, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-319-75380-5_6

Download citation

Publish with us

Policies and ethics