Skip to main content

Measurement of Mitochondrial ROS Formation

  • Protocol
  • First Online:
Mitochondrial Bioenergetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1782))

Abstract

Reactive oxygen species (ROS) are involved in both physiological and pathological processes. This widely accepted concept is based more on the effects of antioxidant interventions than on reliable assessments of rates and sites of intracellular ROS formation. This argument applies also to mitochondria that are generally considered the major site for ROS formation, especially in skeletal and cardiac myocytes.

Detection of oxidative modifications of intracellular or circulating molecules is frequently used as a marker of ROS formation. However, this approach provides limited information on spatiotemporal aspects of ROS formation that have to be defined in order to elucidate the role of ROS in a given pathophysiological condition. This information can be obtained by means of fluorescent probes that allow monitoring ROS formation in cell-free extracts and isolated cells. Thus, this approach can be used to characterize ROS formation in both isolated mitochondria and mitochondria within intact cells. This chapter describes three major examples of the use of fluorescent probes for monitoring mitochondrial ROS formation. Detailed methods description is accompanied by a critical analysis of the limitations of each technique, highlighting the possible sources of errors in performing the assay and results interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egea J, Fabregat I, Frapart YM, Ghezzi P, Gorlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG et al (2017) European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 13:94–162. https://doi.org/10.1016/j.redox.2017.05.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Casas AI, Dao VT, Daiber A, Maghzal GJ, Di Lisa F, Kaludercic N, Leach S, Cuadrado A, Jaquet V, Seredenina T, Krause KH, Lopez MG, Stocker R, Ghezzi P, Schmidt HH (2015) Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications. Antioxid Redox Signal 23(14):1171–1185. https://doi.org/10.1089/ars.2015.6433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW 2nd, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ (2016) Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res 118(12):1960–1991. https://doi.org/10.1161/RES.0000000000000104

    Article  PubMed  CAS  Google Scholar 

  4. Lukyanov KA, Belousov VV (2014) Genetically encoded fluorescent redox sensors. Biochim Biophys Acta 1840(2):745–756. https://doi.org/10.1016/j.bbagen.2013.05.030

    Article  PubMed  CAS  Google Scholar 

  5. Winterbourn CC (2014) The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta 1840(2):730–738. https://doi.org/10.1016/j.bbagen.2013.05.004

    Article  PubMed  CAS  Google Scholar 

  6. Kaludercic N, Deshwal S, Di Lisa F (2014) Reactive oxygen species and redox compartmentalization. Front Physiol 5:285. https://doi.org/10.3389/fphys.2014.00285

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dikalov SI, Harrison DG (2014) Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal 20(2):372–382. https://doi.org/10.1089/ars.2012.4886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mailloux RJ (2015) Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol 4:381–398. https://doi.org/10.1016/j.redox.2015.02.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Starkov AA (2010) Measurement of mitochondrial ROS production. Methods Mol Biol 648:245–255. https://doi.org/10.1007/978-1-60761-756-3_16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhao B, Summers FA, Mason RP (2012) Photooxidation of Amplex Red to resorufin: implications of exposing the Amplex Red assay to light. Free Radic Biol Med 53(5):1080–1087. https://doi.org/10.1016/j.freeradbiomed.2012.06.034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Deshwal S, Di Sante M, Di Lisa F, Kaludercic N (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69. https://doi.org/10.1016/j.coph.2017.04.003

    Article  PubMed  CAS  Google Scholar 

  12. Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shih JC, Pacak K, Kass DA, Di Lisa F, Paolocci N (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106(1):193–202. https://doi.org/10.1161/CIRCRESAHA.109.198366

    Article  PubMed  CAS  Google Scholar 

  13. Kaludercic N, Carpi A, Nagayama T, Sivakumaran V, Zhu G, Lai EW, Bedja D, De Mario A, Chen K, Gabrielson KL, Lindsey ML, Pacak K, Takimoto E, Shih JC, Kass DA, Di Lisa F, Paolocci N (2014) Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal 20(2):267–280. https://doi.org/10.1089/ars.2012.4616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276(4):2571–2575. https://doi.org/10.1074/jbc.M006825200

    Article  PubMed  Google Scholar 

  15. Zhang H, Goodman HM, Jansson S (1997) Antisense inhibition of the photosystem I antenna protein Lhca4 in Arabidopsis thaliana. Plant Physiol 115(4):1525–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79(6):405–425. https://doi.org/10.1002/cyto.a.21061

    Article  PubMed  CAS  Google Scholar 

  17. Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48(8):983–1001. https://doi.org/10.1016/j.freeradbiomed.2010.01.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6. https://doi.org/10.1016/j.freeradbiomed.2011.09.030

    Article  PubMed  CAS  Google Scholar 

  19. Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 103(41):15038–15043. https://doi.org/10.1073/pnas.0601945103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hsieh CW, Chu CH, Lee HM, Yuan Yang W (2015) Triggering mitophagy with far-red fluorescent photosensitizers. Sci Rep 5:10376. https://doi.org/10.1038/srep10376

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuznetsov AV, Margreiter R, Amberger A, Saks V, Grimm M (2011) Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta 1813(6):1144–1152. https://doi.org/10.1016/j.bbamcr.2011.03.002

    Article  PubMed  CAS  Google Scholar 

  22. Tocchetti CG, Ragone G, Coppola C, Rea D, Piscopo G, Scala S, De Lorenzo C, Iaffaioli RV, Arra C, Maurea N (2012) Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur J Heart Fail 14(2):130–137. https://doi.org/10.1093/eurjhf/hfr165

    Article  PubMed  CAS  Google Scholar 

  23. Tocchetti CG, Carpi A, Coppola C, Quintavalle C, Rea D, Campesan M, Arcari A, Piscopo G, Cipresso C, Monti MG, De Lorenzo C, Arra C, Condorelli G, Di Lisa F, Maurea N (2014) Ranolazine protects from doxorubicin-induced oxidative stress and cardiac dysfunction. Eur J Heart Fail 16(4):358–366. https://doi.org/10.1002/ejhf.50

    Article  PubMed  CAS  Google Scholar 

  24. Kim SY, Kim SJ, Kim BJ, Rah SY, Chung SM, Im MJ, Kim UH (2006) Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes. Exp Mol Med 38(5):535–545. https://doi.org/10.1038/emm.2006.63

    Article  PubMed  CAS  Google Scholar 

  25. Khouri MG, Douglas PS, Mackey JR, Martin M, Scott JM, Scherrer-Crosbie M, Jones LW (2012) Cancer therapy-induced cardiac toxicity in early breast cancer: addressing the unresolved issues. Circulation 126(23):2749–2763. https://doi.org/10.1161/CIRCULATIONAHA.112.100560

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279(21):22284–22293. https://doi.org/10.1074/jbc.M312847200

    Article  PubMed  CAS  Google Scholar 

  27. Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP (2011) In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 14(6):819–829. https://doi.org/10.1016/j.cmet.2011.10.010

    Article  PubMed  CAS  Google Scholar 

  28. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286. https://doi.org/10.1038/nmeth866

    Article  PubMed  CAS  Google Scholar 

  29. Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu SE (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105(1):103–113

    Article  CAS  PubMed  Google Scholar 

  30. Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN (2011) Hydrogen peroxide probes directed to different cellular compartments. PLoS One 6(1):e14564. https://doi.org/10.1371/journal.pone.0014564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bilan DS, Belousov VV (2016) HyPer family probes: state of the art. Antioxid Redox Signal 24(13):731–751. https://doi.org/10.1089/ars.2015.6586

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Di Lisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deshwal, S., Antonucci, S., Kaludercic, N., Di Lisa, F. (2018). Measurement of Mitochondrial ROS Formation. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 1782. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7831-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7831-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7830-4

  • Online ISBN: 978-1-4939-7831-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics