Skip to main content
Log in

Application of ATR-far-infrared spectroscopy to the analysis of natural resins

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study proposes FTIR spectroscopy in the far-infrared region (FarIR) as an alternative method for the characterisation of natural resins. To this purpose, standards of natural resins belonging to four different categories (sesquiterpenic, i.e. elemi, shellac; diterpenic, i.e. colophony, Venice turpentine; diterpenic with polymerised components, i.e. copal, sandarac; triterpenic, i.e. mastic and dammar) used as paint varnishes have been analysed by FarIR spectroscopy in ATR mode. Discrimination between spectral data and repeatability of measurements have been magnified and verified using principal component analysis, in order to verify the effectiveness of the method in distinguishing the four resin categories. The same samples were analysed in the MidIR range, but the spectral differences between the different categories were not evident. Moreover, the method has been tested on historical samples from the painting “La Battaglia di Cialdiran” (sixteenth century) and from a gilded leather (seventeenth century). In the first case, FarIR spectroscopy allowed confirmation of the results obtained by analytical pyrolysis. In the latter, FarIR spectroscopy proved successfully, effective in the identification of the superficial resin layer that could not be detected with the bulk chromatographic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thompson DV Jr (1954) Il libro dell’arte, the craftsman’s handbook of Cennino d’Andrea Cennini. Dover, New York

    Google Scholar 

  2. Thomson R. (2005) In Conservation of leather and related materials, Buttherworth Heinemann, 88–91

  3. Mills J, White R (1999) Organic material in museum objects, 2dth edn. Butterworth Heinemann, Oxford, pp 95–129

    Google Scholar 

  4. Andreotti A, Bonaduce I, Colombini MP, Gautier G, Modugno F, Ribechini E (2006) Anal Chem 78:4490–4500

    Article  CAS  Google Scholar 

  5. Domènech-Carbò MT, Kuckova S, de la Cruz-Canizares J, Osete-Cortina L (2006) J Chrom A 1121:248–258

    Article  Google Scholar 

  6. Doménech-Carbò MT (2008) Anal Chim Acta 621:109–139

    Article  Google Scholar 

  7. van den Berg JDJ, Boon JJ, van den Berg KJ, Fiedler I, Miller MA (1998) Anal Chem 70:1823–1830

    Article  Google Scholar 

  8. Chiavari G, Fabbri D, Prati S (2002) Chromatographia 55:611–616

    Article  CAS  Google Scholar 

  9. Shedrinsky SM, Wampler TP, Baer NS (1987) Wiene Berichte veber Naturwissenschaft in der Kunst 4:12–25

    Google Scholar 

  10. Osete-Cortina L, Domènech-Carbò MT (2005) J Chromatogr A 1065:265–278

    Article  CAS  Google Scholar 

  11. Manso M, Carvalho ML (2009) Spectr Acta B 64:482

    Article  Google Scholar 

  12. Casadio F, Toniolo L (2001) J Cult Heritag 2:71–78

    Article  Google Scholar 

  13. Messerschmidt RG, Harthcock MA (1988) Infrared microspectroscopy. Theory and applications. Marcel Dekker, New York

    Google Scholar 

  14. Ricci C, Miliani C, Brunetti BG, Sgamellotti A (2006) Talanta 69:1221–1226

    Article  CAS  Google Scholar 

  15. Bacci M (1995) Sens Actuat B 29(1–3):190–196

    Article  Google Scholar 

  16. Katsibiri O, Howe RF (2010) Microchem J 14–23

  17. Feller RL (1954) Science 120:1069–1070

    Article  CAS  Google Scholar 

  18. Low MJD, Baer NS (1978) In: Conference Proceedings ICOM Committee for Conservation. 5th Triennial Meeting, Zagreb, 1–8 Oct. 1978., Paris 1978

  19. Cartoni G, Russo MV, Spinelli F, Talarico F (2003) Annali di Chimica 93:849–861

    CAS  Google Scholar 

  20. Scalarone D, Lazzari M, Chiantore O (2003) J Anal Appl Pyrol 68–69:115–136

    Article  Google Scholar 

  21. Nevin A, Comelli D, Osticioli I, Toniolo T, Valentini G, Cubeddu R (2009) Anal Bioanal Chem 395:2139–2149

    Article  CAS  Google Scholar 

  22. Edwards HGM, David AR, Brody RH (2008) J Raman Spectr 39:966–971

    Article  CAS  Google Scholar 

  23. Edwards HGM, Falk MJ, Quye A (1997) J Raman Spectrosc 28:243–249

    Article  CAS  Google Scholar 

  24. Edwards HGM, Sibley MG, Heron C (1997) Spectrochim Acta Part A 53:2373–2382

    Article  Google Scholar 

  25. Edwards HGM, Farwel DW, Daffner PL (1996) Spectrochim Acta A 52:1639–1648

    Article  Google Scholar 

  26. Brody RH, Edwards HGM, Pollard AM (2002) Biospectr 67:129–141

    Article  CAS  Google Scholar 

  27. Brody RH, Edwards HGM, Pollard AM (2001) Spectrochim Acta A 57:1325–1338

    Article  CAS  Google Scholar 

  28. Vandenabeele P, Ortega-Aviles M, Castilleros DT, Moens L (2007) Spectrochim Acta A 68:1085–1088

    Article  Google Scholar 

  29. Vandenabeele P, Grimaldi DM, Edwards HGM, Moens L (2003) Spectrochim Acta A 59:2221–2229

    Article  Google Scholar 

  30. Vandenabeele P, Wehling B, Monees L, Edwards E, de Rev M, van Hooydonk G (2000) Anal Chim Acta 407:261–274

    Article  CAS  Google Scholar 

  31. Lau D, Livett M, Prawer S (2008) J Raman Spectr 39:545–552

    Article  CAS  Google Scholar 

  32. Karr C, Kovach JJ (1969) Appl Spectrosc 23:219–223

    Article  CAS  Google Scholar 

  33. Kendix E, Moscardi G, Mazzeo R, Baraldi P, Prati S, Joseph E, Capelli (2008) J Raman Spectrosc 39:1104–1112

    Article  CAS  Google Scholar 

  34. Kendix EL, Prati S, Joseph E, Sciutto G, Mazzeo R (2009) Anal Bioanal Chem 394:1023–1032

    Article  CAS  Google Scholar 

  35. Vahur S, Knuutinen U, Leito I (2009) Spectrochim Acta A 73:764–771

    Article  Google Scholar 

  36. Vahur S, Knuutinen U, Leito I (2010) Spectrochim Acta A 75:1061–1072

    Article  Google Scholar 

  37. Prati S, Joseph E, Sciutto G, Mazzeo R (2010) Acc Chem Res 43:792–801

    Article  CAS  Google Scholar 

  38. Barnes J, Dhanoa MS, Lister SJ (1989) App Spectrosc 43:772–777

    Article  CAS  Google Scholar 

  39. Torri C, Fabbri D (2009) Microchem J 93:133–139

    Article  CAS  Google Scholar 

  40. Mazzeo R, Joseph E, Prati S, Millemaggi A (2007) Anal Chim Acta 599:107–117

    Article  CAS  Google Scholar 

  41. Dutta S, Mallick M, Bertram N, Greenwood PF, Mathews RP (2009) Intern J Coal Geol 80:44–50

    Article  CAS  Google Scholar 

  42. Esteban M, Arino C, Diaz-Cruz JM (2006) Trends Anal Chem 25:86–92

    Article  CAS  Google Scholar 

  43. Harper AM, Duewer DL, Kowalski BR, Fashing JL (1977) In Kowalski BR (ed) Chemometrics: Theory and Application, ACS Symposium

  44. Oliveri P, Baldo MA, Daniele S, Forina M (2009) Anal Bioanal Chem 395:1135–1143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this research has been funded by the national project PRIN 08 “Setting up of diagnostic methodologies for the stratigraphical characterisation and spatial location of the organic components in artistic and archaeological polychrome works of art” and by the European project “CHARISMA” Cultural heritage Advanced Research Infrastructures: Synergy for a Multidisciplinary Approach to Conservation/Restoration, FP7 INFRASTRUCTURE n.228330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Mazzeo.

Additional information

Published in the special issue Analytical Chemistry for Cultural Heritage with Guest Editors Rocco Mazzeo, Silvia Prati, and Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prati, S., Sciutto, G., Mazzeo, R. et al. Application of ATR-far-infrared spectroscopy to the analysis of natural resins. Anal Bioanal Chem 399, 3081–3091 (2011). https://doi.org/10.1007/s00216-010-4388-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4388-y

Keywords

Navigation