Skip to main content
Log in

Electrochemiluminescent aptamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminol as a luminescent label

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A highly selective electrochemiluminescent biosensor for the detection of target nephrotoxic toxin, ochratoxin A (OTA), was developed using a DNA aptamer as the recognition element and N-(4-aminobutyl)-N-ethylisoluminol (ABEI) as the signal-producing compound. The electrochemiluminescent aptamer biosensor was fabricated by immobilizing aptamer complementary DNA 1 sequence onto the surface of a gold-nanoparticle (AuNP)-modified gold electrode. ABEI-labeled aptamer DNA 2 sequence hybridized to DNA 1 and was utilized as an electrochemiluminescent probe. A decreased electrochemiluminescence (ECL) signal was generated upon aptamer recognition of the target OTA, which induced the dissociation of DNA 2 (ABEI-labeled aptamer electrochemiluminescent probe) from DNA 1 and moved it far away from the electrode surface. Under the optimal conditions, the decreased ECL intensity was proportional to an OTA concentration ranging from 0.02 to 3.0 ng mL-1, with a detection limit of 0.007 ng mL-1. The relative standard deviation was 3.8% at 0.2 ng mL-1 (n = 7). The proposed method has been applied to measure OTA in naturally contaminated wheat samples and validated by an official method. This work demonstrates the combination of a highly binding aptamer with a highly sensitive ECL technique to design an electrochemiluminescent biosensor, which is a very promising approach for the determination of small-molecule toxins.

In the absence of target, the ABEI-labeled aptamer probe is thought to hybridize with DNA 1 and assembled onto the surface of gold electrode, resulting in a strong ECL signal due to the tag close to the electrode surface. In the presence of target, the ABEI-labeled aptamer probe binds to OTA and dissociated from the surface of electrode, thus a small ECL signal generated attributed to the decrease of the ABEI-labeled aptamer probe assembled onto the electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weidenborner M (2001) Encyclopedia of food mycotoxins. Springer, Berlin, pp 19–21

    Google Scholar 

  2. Ames IA (2003) Council for Agricultural Science and Technology, report no. 139

  3. Petzinger E, Ziegler K (2000) J Vet Pharmacol Ther 23:91–98

    Article  CAS  Google Scholar 

  4. Pfohl-Leszkowicz A, Mandervill RA (2007) Mol Nutr Food Res 51:61–99

    Article  CAS  Google Scholar 

  5. O’Brien E, Dietrich DR (2005) Crit Rev Toxicol 35:33–60

    Article  Google Scholar 

  6. Duarte SC, Pena A, Lino CM (2010) Food Microbiol 27:187–198

    Article  CAS  Google Scholar 

  7. Corneli S, Maragos CM (1998) J Agr Food Chem 46:3162–3165

    Article  CAS  Google Scholar 

  8. Santos EA, Vargas EA (2002) Food Addit Contam 19:447–458

    Article  CAS  Google Scholar 

  9. Ghali R, Hmaissia-khlifa K, Ghorbel H, Maaroufi K, Hedili A (2009) Food Control 20:716–720

    Article  CAS  Google Scholar 

  10. Moreno Guillamont E, Lino CM, Baeta ML, Pena AS, Silveira MIN, Mañes Vinuesa J (2005) Anal Bioanal Chem 383:570–575

    Article  Google Scholar 

  11. Flajs D, Domijam AM, Ivix D, Cvjetkovic B, Peraica M (2009) Food Control 20:590–592

    Article  CAS  Google Scholar 

  12. Gonzalez-Penas E, Leache C, Lopez de Cerain A, Lizarraga E (2006) Food Chem 97:349–354

    Article  CAS  Google Scholar 

  13. Bacaloni A, Cavaliere C, Faberi A, Pastorini E, Samperi R, Lagana A (2005) J Agric Food Chem 53:5518–5525

    Article  CAS  Google Scholar 

  14. Goryacheva IY, Saeger S, Lobeau M, Eremin SA, Barna-Vetró, Peteghem C (2006) Anal Chim Acta 577:38–45

    Article  CAS  Google Scholar 

  15. Noba S, Uyama A, Mochizuki N (2009) J Agr Food Chem 57:6036–6040

    Article  CAS  Google Scholar 

  16. Aresta A, Palmisano F, Vatinno R, Zambonin CG (2006) J Agric Food Chem 54:1594–1598

    Article  CAS  Google Scholar 

  17. Vatinno R, Vuckovic D, Zambonin CG, Pawliszyn J (2008) J Chromatog A 1201:215–221

    Article  CAS  Google Scholar 

  18. Chu FS (1996) Recent studies on immunoassays for mycotoxins. In Immunoassays for Residue Analysis: Food Safety. Beier RC, Stanker LH, Eds. ACS Symposium Series 621, American Chemical Society: Washington, DC, pp 294–313

  19. Kwak BY, Shon DH (2000) Food Sci Biotechnol 9:168–173

    Google Scholar 

  20. Candish AA, Stimson WH, Smith JE (1988) JAOAC 71:961–964

    Google Scholar 

  21. Wang XH, Liu, Xu N, Zhang Y, Wang S (2007) Anal Bioanal Chem 389:903–911

    Article  CAS  Google Scholar 

  22. Van der Gaag B, Spath S, Dietrich H, Stigter E, Boonzaaijer G, van Osenbruggen T, Koopal K (2003) Food Control 14:251–254

    Article  Google Scholar 

  23. Zezza F, Longobardi F, Pascale M, Eremin SA, Visconti A (2009) Anal Bioanal Chem 395:1317–1323

    Article  CAS  Google Scholar 

  24. Maragos CM, Thompson VS (1999) Nat Toxins 7:371–376

    Article  CAS  Google Scholar 

  25. Fu XH (2007) Anal Lett 40:2641–2652

    Article  CAS  Google Scholar 

  26. Liu RR, Yu Z, He QH, Xu Y (2007) Food Control 18:872–877

    Article  CAS  Google Scholar 

  27. Ngundi MM, Shriver-Lake LC, Moore MH, Lassman ME, Ligler FS, Taitt CR (2005) Anal Chem 77:148–154

    Article  CAS  Google Scholar 

  28. Shen L, He PL (2007) Electrochem Commun 9:657–662

    Article  CAS  Google Scholar 

  29. Aizawa H, Tozuka M, Kurosawa S, Kobayashi S, Reddy SM, Higuchi M (2007) Anal Chim Acta 591:191–194

    Article  CAS  Google Scholar 

  30. Wilson R, Clavering C, Hutchinson A (2003) Anal Chem 75:4244–4249

    Article  CAS  Google Scholar 

  31. Zhang CX, Qi HL, Zhang MN (2007) Luminescence 22:53–59

    Article  Google Scholar 

  32. Wei H, Liu JF, Zhou LI, Li J, Jiang X, Kang JZ, Yang XR, Dong SJ, Wang EK (2008) Chem Eur J 14:3687–3693

    Article  CAS  Google Scholar 

  33. Shi LH, Liu XQ, Li HJ, Xu GB (2006) Anal Chem 78:7330–7334

    Article  CAS  Google Scholar 

  34. Wei H, Du Y, Kang JZ, Wang EK (2007) Electrochem Commun 9:1474–1479

    Article  CAS  Google Scholar 

  35. Zhang J, Qi HL, Li Y, Yang J, Gao Q, Zhang CX (2008) Anal Chem 80:2888–2894

    Article  CAS  Google Scholar 

  36. Arai K, Takahashi K, Kusu F (1999) Anal Chem 71:2237–2240

    Article  CAS  Google Scholar 

  37. Qi HL, Zhang Y, Peng YG, Zhang CX (2008) Talanta 75:684–690

    Article  CAS  Google Scholar 

  38. Tian DY, Duan CF, Wang W, Li N, Zhang H, Cui H, Lu YY (2009) Talanta 78:399–404

    Article  CAS  Google Scholar 

  39. Cui H, Xu Y, Zhang ZF (2004) Anal Chem 76:4002–4010

    Article  CAS  Google Scholar 

  40. Brody EN, Gold L (2000) J Biotechnol 74:5–13

    CAS  Google Scholar 

  41. Tuerk C, Gold L (1990) Science 249:505–510

    Article  CAS  Google Scholar 

  42. Pestourie C, Tavitian B, Duconge F (2005) Biochimie 87:921–930

    Article  CAS  Google Scholar 

  43. Savran CA, Knudsen SM, Ellington AD, Manalis SR (2004) Anal Chem 76:3194–3198

    Article  CAS  Google Scholar 

  44. Stoltenburg R, Reinemann C, Strehlitz B (2007) Biomol Eng 24:381–403

    Article  CAS  Google Scholar 

  45. Cruz-Aguado J, Penner G (2008) J Agric Food Chem 56:10456–10461

    Article  CAS  Google Scholar 

  46. Cruz-Aguado J, Penner G (2008) Anal Chem 80:8853–8855

    Article  CAS  Google Scholar 

  47. Kiselev MV, Gladilin AK, Melik-Nubarov NS, Sveshnikov PG, Miethe P, Levashov AV (1999) Anal Biochem 269:393–398

    Article  CAS  Google Scholar 

  48. Willner I, Katz E (2000) Angew Chem Int Ed 39:1180–1218

    Article  Google Scholar 

  49. GBT 23502-2009. National Standards of the People’s Republic of China (2009) Determination of ochratoxin A in food-high performance liquid chromatographic method with immunoaffinity column clean-up. Standard Press of China

  50. Yin XB, Qi B, Sun XP, Yang XR, Wang EK (2005) Anal Chem 77:3525–3530

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the “863” project (2008AA10Z419), NSFC (20805019), High School Doctoral Programmes Founding of Ministry of Education (20070295014), NSF of Jiangsu Province (BK20081603), 111 project-B07029, and the Scientific and Technical Development Project of Qingdao in China (09-1-3-45-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Wang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Duan, N., Hun, X. et al. Electrochemiluminescent aptamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminol as a luminescent label. Anal Bioanal Chem 398, 2125–2132 (2010). https://doi.org/10.1007/s00216-010-4146-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4146-1

Keywords

Navigation