Skip to main content
Log in

Electro-catalysis by immobilised human flavin-containing monooxygenase isoform 3 (hFMO3)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Human flavin-containing monooxygenases are the second most important class of drug-metabolizing enzymes after cytochromes P450. Here we report a simple but functional and stable enzyme-electrode system based on a glassy carbon (GC) electrode with human flavin-containing monooxygenase isoform 3 (hFMO3) entrapped in a gel cross-linked with bovine serum albumin (BSA) by glutaraldehyde. The enzymatic electrochemical responsiveness is characterised by using well-known substrates: trimethylamine (TMA), ammonia (NH3), triethylamine (TEA), and benzydamine (BZD). The apparent Michaelis–Menten constant (KM) and apparent maximum current (Imax) are calculated by fitting the current signal to the Michaelis–Menten equation for each substrate. The enzyme-electrode has good characteristics: the calculated sensitivity was 40.9 ± 0.5 mA mol−1 L cm−2 for TMA, 43.3 ± 0.1 mA mol−1 L cm−2 for NH3, 45.2 ± 2.2 mA mol−1 L cm−2 for TEA, and 39.3 ± 0.6 mA mol−1 L cm−2 for BZD. The stability was constant for 3 days and the inter-electrode reproducibility was 12.5%. This is a novel electrochemical tool that can be used to investigate new potential drugs against the catalytic activity of hFMO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cashman JR (1995) Chem Res Toxicol 8(2):166–181

    Article  CAS  Google Scholar 

  2. Cashman JR (2004) Drug Discov Today 9(13):574–581

    Article  CAS  Google Scholar 

  3. Cashman JR (2008) Expert Opin Drug Metab Toxicol 4(12):1507–1521

    Article  CAS  Google Scholar 

  4. Krueger SK, Williams DE (2005) Pharmacol Ther 106(3):357–387

    Article  CAS  Google Scholar 

  5. Phillips IR, Dolphin CT, Clair P, Hadley MR, Hutt AJ, McCombie RR, Smith RL, Shephard EA (1995) Chem Biol Interact 96(1):17–32

    Article  CAS  Google Scholar 

  6. Cashman JR (2002) Drug Metab Rev 34(3):513–521

    Article  CAS  Google Scholar 

  7. Cashman JR (2000) Curr Drug Metab 1(2):181–191

    Article  CAS  Google Scholar 

  8. Schlaich NL (2007) Trends Plant Sci 12(9):412–418

    Article  CAS  Google Scholar 

  9. Cashman JR (2005) Biochem Biophys Res Commun 338(1):599–604

    Article  CAS  Google Scholar 

  10. Motika MS, Zhang J, Zheng X, Riedler K, Cashman JR (2009) Mol Genet Metab 97(2):128–135

    Article  CAS  Google Scholar 

  11. Koukouritaki SB, Simpson P, Yeung CK, Rettie AE, Hines RN (2002) Pediatr Res 51(2):236–243

    Article  CAS  Google Scholar 

  12. Mitsubayashi K, Hashimoto Y (2002) Sens Actuators B 83(1–3):35–40

    Article  Google Scholar 

  13. Saito H, Kaneko Y, Hashimoto Y, Shirai T, Mitsubayashi K (2006) Int J Environ Anal Chem 86(14):1057–1064

    Article  CAS  Google Scholar 

  14. Saito H, Kaneko Y, Hashimoto Y, Shirai T, Kudo H, Otsuka K, Mitsubayashi K (2007) Sens Actuators B 123(2):877–881

    Article  Google Scholar 

  15. Mitsubayashi K, Kubotera Y, Yano K, Hashimoto Y, Kon T, Nakakura S, Nishi Y, Endo H (2004) Sens Actuators B 103(1–2):463–467

    Article  Google Scholar 

  16. Saito H, Shirai T, Kudo H, Mitsubayashi K (2008) Anal Bioanal Chem 391(4):1263–1268

    Article  CAS  Google Scholar 

  17. Fillit C, Jaffrezic-Renault N, Bessueille F, Leonard D, Mitsubayashi K, Tardy J (2008) Mat Sci Eng C-Biomim 28(5–6):781–786

    Article  CAS  Google Scholar 

  18. Yeung CK, Adman ET, Rettie AE (2007) Arch Biochem Biophys 464(2):251–259

    Article  CAS  Google Scholar 

  19. Lang DH, Yeung CK, Peter RM, Ibarra C, Gasser R, Itagaki K, Philpot RM, Rettie AE (1998) Biochem Pharmacol 56(8):1005–1012

    Article  CAS  Google Scholar 

  20. Störmer E, Roots I, Brockmöller J (2000) Br J Clin Pharmacol 50(6):553–561

    Article  Google Scholar 

  21. Sadeghi SJ, Meirinhos R, Catucci G, Dodhia VR, Di Nardo G, Gilardi G (2010) J Am Chem Soc 132:458–459

    Article  CAS  Google Scholar 

  22. Guerrieri A, De Benedetto GE, Palmisano F, Zambonin PG (1995) Analyst 120(11):2731–2736

    Article  CAS  Google Scholar 

  23. Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Phillips IR (1997) Nat Genet 17(4):491–494

    Article  CAS  Google Scholar 

  24. Yeung CK, Rettie AE (2006) Methods Mol Biol 320:157–162

    CAS  Google Scholar 

  25. Dong J, Porter TD (1996) Arch Biochem Biophys 327(2):254–259

    Article  CAS  Google Scholar 

  26. Macheroux P (1999) in: Chapman SK, Reid GA (eds) Flavoprotein Protocols: Methods in Molecular Biology, Humana Press, Totowa pp. 1–7

  27. Verhagen MFJM, Hagen WR (1992) J Electroanal Chem 334:339–350

    Article  CAS  Google Scholar 

  28. Wei H, Omanovic S (2008) Chem Biodivers 5(8):1622–1639

    Article  CAS  Google Scholar 

  29. Schoenwald RD, Kumakura T, Catanese B (1987) Int J Tissue React 9(2):93–97

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the EU project (MRTN-035649), PRINMIUR 2007 and Regione Piemonte CIPE 2006. We thank Professor Todd D. Porter (University of Kentucky, USA) for the generous gift of pJL2 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Gilardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castrignanò, S., Sadeghi, S.J. & Gilardi, G. Electro-catalysis by immobilised human flavin-containing monooxygenase isoform 3 (hFMO3). Anal Bioanal Chem 398, 1403–1409 (2010). https://doi.org/10.1007/s00216-010-4014-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4014-z

Keywords

Navigation