Skip to main content
Log in

Redox electrodeposition polymers: adaptation of the redox potential of polymer-bound Os complexes for bioanalytical applications

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The design of polymers carrying suitable ligands for coordinating Os complexes in ligand exchange reactions against labile chloro ligands is a strategy for the synthesis of redox polymers with bound Os centers which exhibit a wide variation in their redox potential. This strategy is applied to polymers with an additional variation of the properties of the polymer backbone with respect to pH-dependent solubility, monomer composition, hydrophilicity etc. A library of Os-complex-modified electrodeposition polymers was synthesized and initially tested with respect to their electron-transfer ability in combination with enzymes such as glucose oxidase, cellobiose dehydrogenase, and PQQ-dependent glucose dehydrogenase entrapped during the pH-induced deposition process. The different polymer-bound Os complexes in a library containing 50 different redox polymers allowed the statistical evaluation of the impact of an individual ligand to the overall redox potential of an Os complex. Using a simple linear regression algorithm prediction of the redox potential of Os complexes becomes feasible. Thus, a redox polymer can now be designed to optimally interact in electron-transfer reactions with a selected enzyme.

A library of redox electrodeposition polymers was synthesized and the formal potentials of the polymer-bound Os-complexes were adjusted through variations of the coordination shell. Optimal adaptation to the redox potentials of enzymes could be attained

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1a
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5a
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scheller FW, Schubert F, Pfeiffer D, Wollenberger U, Renneberg R, Hintsche R, Kühn M (1992) Fifteen years of biosensor research in Berlin-Buch. Biosensors: fundamentals, technologies and applications, Scheller FW, Schmid RD (eds) VCH, Weinheim 17:3–10

  2. Heller A (1996) Amperometric biosensors. Curr Opin Biotechnol 7:50–54

    Article  CAS  Google Scholar 

  3. Schuhmann W (2002) Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures. Rev Mol Biotechnol 82:425–441

    Article  CAS  Google Scholar 

  4. Forster RJ, Vos JG (1990) Synthesis, characterization, and properties of a series of osmium- and ruthenium-containing metallopolymers. Macromol 23:4372–4377

    Article  CAS  Google Scholar 

  5. Ohara TJ, Rajagopalan R, Heller A (1994) Wired enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 66:2451–2457

    Article  CAS  Google Scholar 

  6. Reiter S, Habermüller K, Schuhmann W (2001) A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films. Sens Actuators B 79:150–156

    Google Scholar 

  7. Mizutani F, Asai M (1988) Ferrocene-mediated enzyme electrode for glucose with the use of conducting polymer support. Bull Chem Soc Jpn 61:4458–4460

    Article  CAS  Google Scholar 

  8. Lange MA, Chambers JQ (1985) Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode. Anal Chim Acta 175:89–97

    Article  CAS  Google Scholar 

  9. Hendry SP, Turner APF (1988) A glucose sensor utilising tetracyano-quinodimethane as a mediator. Hormone Metab Res Suppl Ser 20:37–40

    Article  CAS  Google Scholar 

  10. Gregg BA, Heller A (1991) Redox polymer films containing enzymes. Part II. Glucose oxidase-containing enzyme electrodes. J Phys Chem 95:5976–5980

    Article  CAS  Google Scholar 

  11. Gregg BA, Heller A (1990) Crosslinked redox gels containing glucose oxidase for amperometric biosensor applications. Anal Chem 62:258–263

    Article  CAS  Google Scholar 

  12. Heller A (1992) Electrical connection of enzyme redox centre to electrodes. J Phys Chem :3579–3587

  13. Ohara TJ, Rajagopalan R, Heller A (1993) Glucose electrodes based on cross-linked [os(bpy)(2)](+/2+) complexed poly(l-vinylimidazole) films. Anal Chem 65:3512–3517

    Article  CAS  Google Scholar 

  14. Doherty AP, Buckley T, Kelly DM, Vos JG (1994) Stabilization of the redox polymer [Os(bipy)2(PVP)1)Cl]Cl by in situ chemical cross-linking. Electroanalysis 6:553–560

    Article  CAS  Google Scholar 

  15. Forster RJ, Vos JG (1992) The influence of active site loading, electrolyte composition, and temperature on charge transfer reactions of poly(N-vinylimidazole) films containing pendant bis(2, 2′-bipyridine) chloroosmium(1+) moieties. J Electrochem Soc 139:1503–1509

    Article  CAS  Google Scholar 

  16. Doherty AP, Forster RJ, Smyth MR, Vos JG (1991) Development of a sensor for the detection of nitrite using a glassy carbon electrode modified with the electrocatalyst Os(bipy)2(PVP)10ClCl. Anal Chim Acta 255:45–52

    Article  CAS  Google Scholar 

  17. Clarke AP, Vos JG, Hillman AR, Glidle A (1995) Overall redox switching characteristics of osmium-containing poly(4-vinylpyridine) films immersed in aqueous p-toluenesulphonic acid. J Electroanal Chem 389:129–140

    Article  Google Scholar 

  18. Mano N, Mao F, Heller A (2005) On the parameters affecting the characteristics of the “wired” glucose oxidase anode. J Electroanal Chem 574:347–357

    Article  CAS  Google Scholar 

  19. Demkiv O, Smutok O, Paryzhak S, Gayda G, Sultanov Y, Guschin D, Shkil H, Schuhmann W, Gonchar M (2008) Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta 76:837–846

    Article  CAS  Google Scholar 

  20. Vilkanauskyte A, Erichsen T, Marcinkeviciene L, Laurinavicius V, Schuhmann W (2002) Reagentless biosensors based on co-entrapment of a soluble redox polymer and an enzyme within an electrochemically deposited polymer film. Biosens Bioelectron 17:1025–1031

    Article  CAS  Google Scholar 

  21. Gallaway JW, Calabrese Barton SA (2009) Effect of redox polymer synthesis on the performance of a mediated laccase oxygen cathode. J Electroanal Chem 626:149–155

    Article  CAS  Google Scholar 

  22. Foulds NC, Lowe CR (1988) Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Anal Chem 60:2473–2478

    Article  CAS  Google Scholar 

  23. Habermüller K, Ramanavicius A, Laurinavicius V, Schuhmann W (2000) An oxygen-insensitive reagentless glucose biosensor based on osmium-complex modified polypyrrole. Electroanalysis 12:1383–1389

    Article  Google Scholar 

  24. Ramanavicius A, Habermüller K, Csoregi E, Laurinavicius V, Schuhmann W (1999) Polypyrrole entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains. Anal Chem 71:3581–3586

    Article  CAS  Google Scholar 

  25. Reiter S, Ruhlig D, Ngounou B, Neugebauer S, Janiak S, Vilkanauskyte A, Erichsen T, Schuhmann W (2004) An electrochemical robotic system for the optimization of amperometric glucose biosensors based on a library of cathodic electrodeposition paints. Macromol Rapid Commun 25:348–354

    Article  CAS  Google Scholar 

  26. Boland S, Barriere F, Leech D (2008) Designing stable redox-active surfaces: chemical attachment of an osmium Complex to glassy carbon electrodes orefunctionalized by electrochemical reduction of an in situ-generated aryldiazonium cation. Langmuir :6351–6358

  27. Ju H, Gong Y, Zhu H (2001) Electrolyte effects on electrochemical properties of osmium complex polymer modified electrodes. Anal Sci 17:59–63

    Article  CAS  Google Scholar 

  28. Ricci A, Rolli C, Rothacher S, Baraldo L, Bonazzola C, Calvo EJ, Tognalli N, Fainstein A (2007) Electron transfer at Au surfaces modified by tethered osmium bipyridine-pyridine complexes. J Solid State Electrochem :1511–1520

  29. Smutok O, Ngounou B, Pavlishko H, Gayda G, Gonchar M, Schuhmann W (2006) A reagentless bienzyme amperometric biosensor based on alcohol oxidase/peroxidase and an Os-complex modified electrodeposition paint. Sens Actuators B 113:590–598

    Google Scholar 

  30. Volker E, Calvo EJ, Williams FJ (2008) Layer-by-layer self-assembled redox polyelectrolytes on passive steel. Isr J Chem :305–312

  31. Kavanagh P, Boland S, Jenkins P, Leech D (2009) Performance of a glucose/O2 enzymatic biofuel cell containing a mediated Melanocarpus albomyces laccase cathode in a physiological buffer. Fuel Cells :79–84

  32. Kavanagh P, Jenkins P, Leech D (2008) Electroreduction of O2 at a mediated Melanocarpus albomyces laccase cathode in a physiological buffer. Electrochem Commun :970–972

  33. Kavanagh P, Leech D (2006) Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization. Anal chem :2710–2716

  34. Barriere F, Kavanagh P, Leech D (2006) A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer. Electrochim Acta :5187–5192

  35. Boland S, Kavanagh P, Leech D (2008) Mediated enzyme electrodes for biological fuel cell and biosensor applications. ECS Transactions :77–87

  36. Jenkins PA, Boland S, Kavanagh P, Leech D (2009) Evaluation of performance and stability of biocatalytic redox films constructed with different copper oxygenases and osmium-based redox polymers. Bioelectrochemistry :162–168

  37. Forster RJ, Walsh DA, Mano N, Mao F, Heller A (2004) Modulating the redox properties of an osmium-containing metallopolymer through the supporting electrolyte and cross-linking. Langmuir 20:862–868

    Article  CAS  Google Scholar 

  38. Heller A (2006) Electron-conducting redox hydrogels: design, characteristics and synthesis. Curr Opin Chem Biol 10:664–672

    Article  CAS  Google Scholar 

  39. Mao F, Mano N, Heller A (2003) Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels. J Am Chem Soc 125:4951–4957

    Article  CAS  Google Scholar 

  40. Mano N, Soukharev V, Heller A (2006) A laccase-wiring redox hydrogel for efficient catalysis of O2 electroreduction. J Phys Chem B 110:11180–11187

    Article  CAS  Google Scholar 

  41. Kurzawa C, Hengstenberg A, Schuhmann W (2002) Immobilization method for the preparation of biosensors based on pH shift-induced deposition of biomolecule-containing polymer films. Anal Chem 74:355–361

    Article  CAS  Google Scholar 

  42. Neugebauer S, Isik S, Schulte A, Schuhmann W (2003) Acrylic acid-based copolymers as immobilization matrix for amperometric biosensors. Anal Lett 36:2005–2020

    Article  CAS  Google Scholar 

  43. Ngounou B, Neugebauer S, Frodl A, Reiter S, Schuhmann W (2004) Combinatorial synthesis of a library of acrylic acid-based polymers and their evaluation as immobilisation matrix for amperometric biosensors. Electrochim Acta 49:3855–3863

    Article  CAS  Google Scholar 

  44. Ngounou B, Aliyev EH, Guschin DA, Sultanov YM, Efendiev AA, Schuhmann W (2007) Parallel synthesis of libraries of anodic and cathodic functionalized electrodeposition paints as immobilization matrix for amperometric biosensors. Bioelectrochemistry 71:81–90

    Article  CAS  Google Scholar 

  45. Guschin DA, Shkil H, Schuhmann W (2009) Electrodeposition polymers as immobilization matrices in amperometric biosensors: improved polymer synthesis and biosensor fabrication. Anal Bioanal Chem 395:1693–1706

    Article  CAS  Google Scholar 

  46. Gao Z, Binyamin G, Kim H-H, Calabrese Barton SA, Zhang Y, Heller A (2002) Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking. Angew Chem Int Ed 41:810–813

    Article  CAS  Google Scholar 

  47. Xue C, Luo F-T, Chen J, Liu H (2006) Synthesis and biosensing application of highly water-soluble and cross-linkable poly(p-phenyleneethynylene) containing osmium(II) complex and aldehyde groups. Anal Chim Acta 569:27–34

    Article  CAS  Google Scholar 

  48. Kober EM, Caspar JV, Sullivan BP, Meyer TJ (1988) Synthetic routes to new polypyridyl complexes of osmium (II). Inorg Chem :4587–4598

  49. Ohara T, Rajagopalan R, Heller A (1993) Glucose electrodes based on cross-linked [Os(bpy)2Cl]+/2+ complexed poly(1-vinilimidazol). Anal Chem :3512–3517

  50. Guschin DA, Sultanov YM, Sharif-Zade NF, Aliyev EH, Efendiev AA, Schuhmann W (2006) Redox polymer-based reagentless horseradish peroxidase biosensors Influence of the molecular structure of the polymer. Electrochim Acta 51:5137–5142

    Article  CAS  Google Scholar 

  51. Badura A, Guschin D, Esper B, Kothe T, Neugebauer S, Schuhmann W, Rogner M (2008) Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20:1043–1047

    Article  CAS  Google Scholar 

  52. Weizman H, Tor Y (2002) Redox-active metal-containing nucleotides: synthesis, tunability, and enzymatic incorporation into DNA. J Am Chem Soc 124:1568–1569

    Article  CAS  Google Scholar 

  53. Nakabayashi Y, Omayu A, Yagi S, Nakamura K (2001) Evaluation of osmium(II) complexes as electron transfer mediators accessible for amperometric glucose sensors. Anal Sci 17:945–950

    Article  CAS  Google Scholar 

  54. Keyes TE, Leane D, Forster RJ, Coates CG, McGarvey JJ, Nieuwenhuyzen MN, Figgemeier E, Vos JG (2002) Redox and spectroscopic orbitals in Ru(II) and Os(II) phenolate complexes. Inorg Chem :5721–5732

Download references

Acknowledgments

The authors are grateful to the European Commission in the framework of the project “3D-Nanobiodevice” (NMP4-SL-2009-229255) and to the German Science Foundation in the framework of the ERA-Chemistry Open Initiative 2008 (DFG; SCHU 929/10-1) for financial support of part of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schuhmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guschin, D.A., Castillo, J., Dimcheva, N. et al. Redox electrodeposition polymers: adaptation of the redox potential of polymer-bound Os complexes for bioanalytical applications. Anal Bioanal Chem 398, 1661–1673 (2010). https://doi.org/10.1007/s00216-010-3982-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3982-3

Keywords

Navigation