Skip to main content

Enzyme Immobilization and Mediation with Osmium Redox Polymers

  • Protocol
  • First Online:
Enzyme Stabilization and Immobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1504))

Abstract

Enzymatic electrodes are becoming increasingly common for energy production and sensing applications. Research over the past several decades has addressed a major issue that can occur when using these biocatalysts, i.e., slow heterogeneous electron transfer, by incorporation of a redox active species to act as an electron shuttle. There are several advantages to immobilizing both the enzyme and mediator at the enzyme surface, including increased electron transfer rates, decreased enzyme leaching, and minimized diffusion limitations. Redox polymers consisting of a redox active center attached to a polymer backbone are a particularly attractive option because they have high self-exchange rates for electron transfer and tunable redox potential. Osmium (Os) polymers are the most well studied of this type of polymer for bioelectrocatalysis. Here, we describe the methods to synthesize one of the most common Os redox polymers and how it can be used to fabricate glucose oxidase electrodes. Procedures are also outlined for evaluating the enzymatic electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallaway JW (2014) Mediated enzyme electrodes. Enzymatic Fuel Cells pp 146–180

    Google Scholar 

  2. Yahiro AT, Lee SM, Kimble DO (1964) Bioelectrochemistry. I. Enzyme utilizing biofuel cell studies. Biochim Biophys Acta 88(2):375–383

    CAS  PubMed  Google Scholar 

  3. Janda P, Weber J (1991) Quinone-mediated glucose oxidase electrode with the enzyme immobilized in polypyrrole. J Electroanal Chem Interfacial Electrochem 300(1):119–127

    Article  CAS  Google Scholar 

  4. Palmore G, Kim HH (1999) Electro-enzymic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J Electroanal Chem 464(1):110–117

    Article  CAS  Google Scholar 

  5. Tsujimura S, Tatsumi H, Ogawa J, Shimizu S, Kano K, Ikeda T (2001) Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2′-azinobis(3-3thylbenzothiazolin-6-sulfonate) as an electron transfer mediator. J Electroanal Chem 496:69–75

    Article  CAS  Google Scholar 

  6. Zen J-M, Lo C-W (1996) A glucose sensor made of an enzymatic clay-modified electrode and methyl viologen mediator. Anal Chem 68(15):2635–2640

    Article  CAS  PubMed  Google Scholar 

  7. Qian J, Liu Y, Liu H, Yu T, Deng J (1996) An amperometric new methylene blue N-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as an immobilization matrix for peroxidase. Anal Biochem 236(2):208–214

    Article  CAS  PubMed  Google Scholar 

  8. Katz E, Heleg‐Shabtai V, Willner I, Rau HK, Haehnel W (1998) Surface reconstitution of a de novo synthesized hemoprotein for bioelectronic applications. Angew Chem Int Ed 37(23):3253–3256

    Article  CAS  Google Scholar 

  9. Riklin A, Katz E, Wiliner I, Stocker A, Bückmann AF (1995) Improving enzyme electrode contacts by redox modification of cofactors. Nature 376(6542):672–675

    Google Scholar 

  10. Barlett P, Cooper J (1993) A review of the immobilization of enzymes in electropolymerized films. J Electroanal Chem 362(1):1–12

    Article  Google Scholar 

  11. Schuhmann W (1995) Conducting polymer based amperometric enzyme electrodes. Microchim Acta 121(1):1–29

    Article  CAS  Google Scholar 

  12. Cosnier S (1997) Electropolymerization of amphiphilic monomers for designing amperometric biosensors. Electroanalysis 9(12):894–902

    Article  CAS  Google Scholar 

  13. Xu S, Minteer SD (2014) Pyrroloquinoline quinone-dependent enzymatic bioanode: incorporation of the substituted polyaniline conducting polymer as a mediator. ACS Catal 4(7):2241–2248. doi:10.1021/cs500442b

    Article  CAS  Google Scholar 

  14. Willner I, Katz E, Lapidot N, Bauerle P (1992) Bioelectrocatalysed reduction of nitrate utilizing polythiophene bipyridinium enzyme electrodes. Bioelectrochem Bioenerg 29(1):29–45

    Article  CAS  Google Scholar 

  15. Calvo E, Etchenique R, Danilowicz C, Diaz L (1996) Electrical communication between electrodes and enzymes mediated by redox hydrogels. Anal Chem 68(23):4186–4193

    Article  CAS  PubMed  Google Scholar 

  16. Koide S, Yokoyama K (1999) Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer. J Electroanal Chem 468(2):193–201

    Article  CAS  Google Scholar 

  17. Meredith MT, Kao D-Y, Hickey D, Schmidtke DW, Glatzhofer DT (2011) High current density ferrocene-modified linear poly(ethylenimine) bioanodes and their use in biofuel cells. J Electrochem Soc 158(2):B166–B174. doi:10.1149/1.3505950

    Article  CAS  Google Scholar 

  18. Hickey DP, Halmes AJ, Schmidtke DW, Glatzhofer DT (2014) Electrochemical characterization of glucose bioanodes based on tetramethylferrocene-modified linear poly (ethylenimine). Electrochim Acta 149:252–257

    Article  CAS  Google Scholar 

  19. Degani Y, Heller A (1989) Electrical communication between redox centers of glucose oxidase and electrodes via electrostatically and covalently bound redox polymers. J Am Chem Soc 111(6):2357–2358

    Article  CAS  Google Scholar 

  20. Zakeeruddin S, Fraser D, Nazeeruddin MK, Grätzel M (1992) Towards mediator design: characterization of tris-(4, 4′-substituted-2, 2′-bipyridine) complexes of iron (II), ruthenium (II) and osmium (II) as mediators for glucose oxidase of Aspergillus niger and other redox proteins. J Electroanal Chem 337(1):253–283

    Article  CAS  Google Scholar 

  21. Nakabayashi Y, Omayu A, Yagi S, Nakamura K, Motonaka J (2001) Evaluation of osmium (II) complexes as electron transfer mediators accessible for amperometric glucose sensors. Anal Sci 17(8):945–950

    Article  CAS  PubMed  Google Scholar 

  22. Gallaway JW, Barton SAC (2008) Kinetics of redox polymer-mediated enzyme electrodes. J Am Chem Soc 130(26):8527–8536. doi:10.1021/ja0781543

    Article  CAS  PubMed  Google Scholar 

  23. Daigle F, Leech D (1997) Reagentless tyrosinase enzyme electrodes: effects of enzyme loading, electrolyte pH, ionic strength, and temperature. Anal Chem 69(20):4108–4112

    Article  CAS  Google Scholar 

  24. Kenausis G, Chen Q, Heller A (1997) Electrochemical glucose and lactate sensors based on “wired” thermostable soybean peroxidase operating continuously and stably at 37 C. Anal Chem 69(6):1054–1060

    Article  CAS  PubMed  Google Scholar 

  25. Mao L, Yamamoto K (2000) Amperometric on-line sensor for continuous measurement of hypoxanthine based on osmium-polyvinylpyridine gel polymer and xanthine oxidase bienzyme modified glassy carbon electrode. Anal Chim Acta 415(1):143–150

    Article  CAS  Google Scholar 

  26. Gaspar S, Habermüller K, Csöregi E, Schuhmann W (2001) Hydrogen peroxide sensitive biosensor based on plant peroxidases entrapped in Os-modified polypyrrole films. Sensors Actuators B Chem 72(1):63–68

    Article  CAS  Google Scholar 

  27. Antiochia R, Gorton L (2007) Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages. Biosens Bioelectron 22(11):2611–2617

    Article  CAS  PubMed  Google Scholar 

  28. Rasmussen M, West R, Burgess J, Lee I, Scherson D (2011) Bifunctional trehalose anode incorporating two covalently linked enzymes acting in series. Anal Chem 83(19):7408–7411. doi:10.1021/ac2014417

    Article  CAS  PubMed  Google Scholar 

  29. Mano N, Mao F, Heller A (2003) Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J Am Chem Soc 125(21):6588–6594

    Article  CAS  PubMed  Google Scholar 

  30. Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D (2012) An implantable biofuel cell for a live insect. J Am Chem Soc 134(3):1458–1460

    Article  CAS  PubMed  Google Scholar 

  31. Ohara TJ, Rajagopalan R, Heller A (1994) “Wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal Chem 66(15):2451–2457

    Article  CAS  PubMed  Google Scholar 

  32. Forster RJ, Vos JG (1990) Synthesis, characterization, and properties of a series of osmium-and ruthenium-containing metallopolymers. Macromolecules 23(20):4372–4377

    Article  CAS  Google Scholar 

  33. Lay PA, Sargeson AM, Taube H, Chou MH, Creutz C (1986) Cis‐Bis (2, 2′‐Bipyridine‐N, N′) Complexes of Ruthenium (III)/(II) and Osmium (III)/(II). Inorg Synth 24:291–299

    CAS  Google Scholar 

  34. Milton RD, Giroud F, Thumser AE, Minteer SD, Slade RC (2013) Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement. Phys Chem Chem Phys 15(44):19371–19379

    Article  CAS  PubMed  Google Scholar 

  35. Gao F, Courjean O, Mano N (2009) An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification. Biosens Bioelectron 25:356–361

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Rasmussen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

VandeZande, G.R., Olvany, J.M., Rutherford, J.L., Rasmussen, M. (2017). Enzyme Immobilization and Mediation with Osmium Redox Polymers. In: Minteer, S. (eds) Enzyme Stabilization and Immobilization. Methods in Molecular Biology, vol 1504. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6499-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6499-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6497-0

  • Online ISBN: 978-1-4939-6499-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics